
Scientific Software
Development Infrastructure

Rossen Apostolov
KTH/PDC

rossen@kth.se

mailto:rossen@kth.se

A use case:
GROMACS

GROMACS
• Project started 1995 in Groningen, most of the core developers

are now in Sweden

• Highly tuned code for molecular dynamics, minimization, normal
mode analysis; post-processing tools (>100)

• Open source & Free software: L-GPL

• 3000-5000 users world wide, through Folding@Home 300k
active CPUs, Apr. 2012

• Strong focus on optimized algorithms and efficient code

Source code in a
nutshell…

• has had 14,086 commits made by 51
contributors, representing 1,722,962 lines of
code

• is mostly written in C/C++, with an average
number of source code comments

• took an estimated 496 years of effort
(COCOMO model), starting with its first
commit in November, 1997

Taken from http://www.ohloh.net/p/gromacs

http://www.ohloh.net/p/gromacs

pre- and post-2009

• CVS -> git

• Autoconf -> CMake

• No code review -> gerrit

• No auto-building -> jenkins

• Bugzilla -> Redmine

GIT

• Distributed version control system

• No real ‘central’ repository

• Very powerful

• Easy branching, easy merging, easy history changes

• Easy sharing

• git.gromacs.org

• other popular system is Mercurial

http://git.gromacs.org

CMake

• Cross-platform!

• No dependencies (need C++ compiler)

• Generates makefile and projects

• Simple syntax

• Testing framework

• Package builders

Gerrit (code review)

• Produce better code

• Code review + verification

• Anyone can submit and review patches

• Couples great with git, jenkins

• gerrit.gromacs.org

• other systems: Differential (Facebook), Crucible
(Atlassian), pull request (Github)

http://gerrit.gromacs.org

• Building/testing software projects continuously

• Monitoring executions of externally-run jobs

• Example uses:

• Unit tests; Regression tests; Static analysis; Coding style
conformity; Benchmarking; Profiling; Generate
documentation; etc...

• jenkins.gromacs.org

• Another popular system is Travis

http://jenkins.gromacs.org

• Multiple projects support; Flexible role based access control

• Flexible issue tracking system; Issue creation via email

• Gantt chart; calendar; news,;documents & files management; wiki;
forums; time tracking;

• SCM integration (SVN, CVS, Git, Mercurial, Bazaar and Darcs)

• Multiple LDAP authentication support

• Other issue tracking systems

• probably >100

• web-based ones are most popular

• connect the systems with other tools - repository, code review etc.

Jenkins

Redmine

Developer

Gerrit

git repository

patch 1

patch 2

patch 3

patch 4

………

local git

Developer

Ub.12.04

Ub.13.01

Mac OS X

Virtual
Build Servers

Ub.10.04

Win 2008

Unix64

CentOS 6.3
Clone repository

Push
new patch

“Fixes
#207”

“Change uploaded for #207”

Fetch patch for review

Fetch patch
for verification

+2

+1

git repository

GitHub

Now for the general
use case

Status quo in e-Science
• Software

development is the
core of e-Science
research

• Many groups use
outdated
technologies

• Might work for a single
developer; a disaster for

a team and long-term
maintenance

• Lack of adoption due to
unfamiliarity with
existing solutions; fear
of steep learning curve

• Course in Software
development tools –
success and valuable
experience

Nordic status-quo
• Nordic researchers

produce widely used
software with big global
impact

• Some groups have
already adopted best
practices

• Application experts with
necessary knowledge

• Nordic e-infrastructure
providers possess the
means to improve the
software development
processes

Project Idea

Address the growing needs of e-Science
communities by:

• Establishing a software development e-
Infrastructure

• Coupling it with necessary technical expertise

• Extensive training and on-boarding activities

e-Infrastructure
• Distributed version

control (DVC)
repositories for scientific
codes

• Issue tracking systems

• Code review systems 
 

• Code analyzers,
debuggers and profilers
framework

• Build systems, unit
testing frameworks and
report boards

• Code Integration and
benchmarking

Couple Infrastructure
and Expertise

• There exists expertise among researchers, some
groups already apply best practices

• Build upon experiences of e.g. SNIC application
experts network to nucleate a wider
communication environment

• This will be achieved naturally through jointly
developing the infrastructure and running the
training activities

Training and 
On-boarding

• Very important!

• Extensive training and on-boarding
activities

• Organize series of training events, as
close to users as possible

• Quickly bring groups up-to-speed

• Benefits for Researchers

• Productivity

• Quality of codes

• Skills of developers

• Benefits for National Providers

• Increased competence of users

• Improve resource utilization

• Long-term maintainability of software

• Benefits for Nordic Region

• Strengthen the community

• Increased interactions between groups

Questions:

• What is your experience with such
systems?

• What needs do you see in your
communities?

