
D7.4.2 Benchmarking and Performance Modelling on Tier-0 systems

PRACE-1IP-WP7 30.06.2012 1

1.1 HPCC

1.1.1 Summary

The HPC Challenge benchmark [1] is a combined benchmark set which consists of 7
subbenchmarks, such as HPL (the Linpack TPP benchmark), DGEMM (matrix-matrix
multiplication execution rate), STREAM (sustainable memory bandwidth and the
corresponding computation rate), PTRANS (communication of large arrays), RandomAccess
(the rate of integer random updates of memory), FFT (complex one-dimensional Discrete
Fourier Transform), b_eff Latency/Bandwidth (latency and bandwidth of a number of
simultaneous communication patterns). Detailed description is found on [2].
Source code and xml files for the operation on JuBE framework are available under the SVN
(https://prace.osd.sara.nl/svn/trunk/pracewp74a/PABS/applications/hpcc) whose TRAC
version is 220.

1.1.2 TestCase

-- On CURIE --
Of 7 available benchmarks, we perform HPL, STREAM, and Star Random Access, for the
consistency with the prior synthetic benchmarks in the PRACE PP [3].

a) Compilation
We use the Intel compiler Ver. 12.1.0 with Intel MKL library Ver. 10.3 for BLAS functions
and the Bullxmpi Ver. 1.1.14.1. We refer to
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-use-of-
intel-mkl-in-hpcc-benchmark/
and
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-hpl-
application-note/
as a guideline for the tuning of HPCC runs under the Intel compiler.

Compilation and linker flags are as follows:

Compilation Flag: -O3 –ip –ftz -openmp
Linker Flag: -nofor-main -lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core –lm -

lpthread
-nofor-main flag is added to resolve the linking error caused by a fortran executable referring
to the c-based library
(http://software.intel.com/en-us/articles/error-undefined-reference-to-main/).

For running specific part of the whole HPCC package, you can edit individual parameter (e.g.,
RunHPL, RunStarStream, ...) at the start of the source code (hpcc.c). We explicitly edited the
code for operating interesting benchmarks only. See Appendix 1.

For job submission on CURIE via JuBE benchmark environemt[4], a number of input files are
required according to its format. Details are given in Appendix 2.

https://prace.osd.sara.nl/svn/trunk/pracewp74a/PABS/applications/hpcc�
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-use-of-intel-mkl-in-hpcc-benchmark/�
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-use-of-intel-mkl-in-hpcc-benchmark/�
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-hpl-application-note/�
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-hpl-application-note/�
http://software.intel.com/en-us/articles/error-undefined-reference-to-main/�

D7.4.2 Benchmarking and Performance Modelling on Tier-0 systems

PRACE-1IP-WP7 30.06.2012 2

b) Parameters and Experiments
Ns (Problem Size), NBs (Block Size), P and Q (Process Grid Ratio) are four important
parameters for the better performance. We refer to
http://lab.advancedclustering.com/hpl.html
for setting these input parameters optimal for CURIE fat nodes (32 Cores per node with 4 GB
RAM per core). According to the recommendation from HPCC [1], Ns is designed to create a
2-dimensional double-precision array which consumes 80% of the total memory, i.e.,

8.0*)(8/_ byteMemoryTotalNs = ; NBs is recommended to be in the range of 32 – 256 and it
shall be the factor of Ns; Q is designed to be eual to or slightly larger than P. Also, Q and P
are factors of the number of blocks in each direction, i.e., (Ns / NBs).

We perform four distinct measurements as follows:

Test Case A: LINPACK Sustained Flop/s
(HPL banchmark from 1 to 1024 cores)
Test Case B: Sustained Memory Bandwidth
(StarSTREAM benchmark from 1 to 32 cores)
Test Case C: T1.6 Cache Miss Performance
(RandomAccess benchmark from 1 to 32 cores)
Test Case D: T2.1 Memory Bandwidth Compared to Flop/s
(HPL and StarSTREAM benchmark with 32 cores)

Each measurement has been performend separately, by turning off all other subbenchmarks
for an individual measurement.

c) Test Case A
LINPACK Sustained Flop/s has been measured via the pure MPI job allocation. We
compared the performance via a MPI (32 processors) and a hybrid (4 threads * 8 processors)
task and find that
MPI: N=115712,NB=128,P=4,Q=8  HPL=0.257304
Hybrid: N=115712,NB=256,P=2,Q=4  HPL=0.245906
which verifies the MPI task is preferred for the better Linpack performance.

9 distinct tests have been performed with the following conditions:
 1 (core) * 1 (node), 4 (cores) * 1 (node), 16 (cores) * 1 (node),

32 (cores) * 1 (node), 32 (cores) * 2 (nodes), 32 (cores) * 4 (nodes),
32 (cores) * 8 (nodes), 32 (cores) * 16 (nodes), 32 (cores) * 32 (nodes)

We vary Ns, NBs, or P * Q and measure the performance for determining these parameters.
We use 1 full node resource (32 Cores with 4 GB memory per core) for this instrument.

For determining Ns, we initially fix NBs = 256 and P*Q = 4*8. We vary Ns to 57856
(equivalent to 1 GB memory usage), 81920 (2 GB), 99840 (3 GB) and 115712 (4 GB).

1 GB 2 GB 3 GB 4 GB (Unit)

HPL 0.235275 0.242752 0.248511 0.253234 (Tflops)

It verifies that larger memory usage (within the limit of system’s capacity) will increase the
sustained Flop/s.

http://lab.advancedclustering.com/hpl.html�

D7.4.2 Benchmarking and Performance Modelling on Tier-0 systems

PRACE-1IP-WP7 30.06.2012 3

NBs is determined by fixing Ns equivalent to 4 GB and P*Q = 4*8. We vary NBs to 128, 256,
384 and 512.

128 256 384 512 (Unit)

HPL 0.256534 0.252713 0.247194 0.239978 (Tflops)

We observe that the best NBs is 128 for CURIE fat nodes.

Finally P and Q are determined on a condition that Ns is 115712 (equivalent to 4 GB memory
per core) and NBs is 128. We vary P from 1 to 32.

P 1 2 4 8 16 32
Q 32 16 8 4 2 1
HPL 0.236568 0.247805 0.257304 0.257147 0.246444 0.229048

For the clarity in case of inter-node communication, we also performed the same test on 4
nodes.

P 1 2 4 8 16 32 64 128
Q 128 64 32 16 8 4 2 1
HPL 0.817384 0.889192 0.932069 0.968265 0.94026 0.758805 0.578785 0.411013

It verifies that Q≥P condition satisfies the best performance.

d) Test Case B
Memory banwithd

Sustained Memory Bandwidth test runs the StarSTREAM under the condition that the
problem is set to use the full memory. Thus, we apply the same Ns condition as the HPL test.
Other parameters are not much relevant to this test.
We initially compared 32-core jobs via pure MPI, pure OpenMP and hybrid (cores under a
single socket are threaded) runs to figure out which way is optimal for the memory
bandwidth.

MPI Hybrid OpenMP (Unit)

StarSTREAM_Copy 1.83408 14.5708 58.0668 (MB/s)
StarSTREAM_Scale 1.81728 14.5426 57.8167 (MB/s)
StarSTREAM_Add 2.0457 16.3238 64.9911 (MB/s)
StarSTREAM_Triad 2.07442 16.409 65.3644 (MB/s)

We sense that the measured bandwith is the average-per-process. If it is rewritten via per-
core,

MPI Hybrid OpenMP (Unit)

StarSTREAM_Copy 1.83408 1.82135 1.814588 (MB/s)
StarSTREAM_Scale 1.81728 1.817825 1.806772 (MB/s)
StarSTREAM_Add 2.0457 2.040475 2.030972 (MB/s)
StarSTREAM_Triad 2.07442 2.051125 2.042638 (MB/s)

D7.4.2 Benchmarking and Performance Modelling on Tier-0 systems

PRACE-1IP-WP7 30.06.2012 4

We observe that the pure MPI job provides the better bandwidth.

e) Test Case C
Cache Miss Performance test runs StarRandomAccess and MPIRandomAccess benchmark
tasks. In accordance to PP D 5.2 [3], we set Ns to consume half of total available memory.
Other parameters are not much relevant to this test.
Again we compared 32-core jobs via pure MPI, pure OpenMP and hybrid (cores under a
single socket are threaded) runs to figure out which way is optimal.

MPI Hybrid OpenMP (Unit)

MPIRandomAccess 0.068468 0.008286 0.001817 (GUPs)
StarRandomAccess 0.012019 0.03536 0.006504 (GUPs)

We find that the hybrid operation provides a better update rate compared to MPI job. Thus,
we perform the MPI run for MPIRandomAccess and a hybrid run for the StarRandomAccess.

f) Test Case D
This test computes the Memory Bandwidth to Flop/s ratio. It can be acquired by the simple
arithmetics from Test A and B, while we repeat this test to match the same local condition
between HPL and STREAM tests. It is done for a single node.

1.1.3 Results and Analysis

a) LINPACK Sustained Flop/s
This is a measure of sustained double precision (DP) floating-point operations per second
(flop/s) using the LINPACK benchmark which solves a dense linear system of equations. It is
used to provide a flop calculation rate measure close to peak performance. The benchmark is
included here because of the popularity of LINPACK in ranking floating-point performance
in the TOP500 list. In total, 9 jobs have been run, combining 1 up till 32 nodes. The highest
measured rate was 7829.00 Gflop/s on 32 nodes with 1024 cores. The measured data points
form an almost perfect straight line

 Input Parameters

nodes/cores N NB P Q Gflop/s
1/1 20480 128 1 1 8.22

1/4 40960 128 2 2 32.20

1/16 81920 128 4 4 127.30

1/32 115712 128 4 8 247.40

2/64 163840 128 8 8 505.30

4/128 231680 128 8 16 1018.00

8/256 327680 128 16 16 2006.00

16/512 463360 128 16 32 3998.00

32/1024 655360 128 32 32 7829.00

D7.4.2 Benchmarking and Performance Modelling on Tier-0 systems

PRACE-1IP-WP7 30.06.2012 5

One thing to mention is, the solution at 64 cores / 256 cores (when P=Q) result in residual
check (in other words, solution diverges). That should be related with the P and Q setup
(setting so that P < Q) or the system-optimal compilation option. Considering that P<Q cases
returns the converged solution, P<Q seems a mandatory condition for HPL benchmark.

b) Sustained Memory Bandwidth
This is a measure of sustained memory bandwidth using the Stream benchmark from HPCC.
The purpose of this benchmark is to stress main memory.
The bandwidth drops roughly a factor 2 going from one core to multiple cores. Adding more
cores does not decrease the bandwidth less.

Cores Add (GB/s) Copy (GB/s) Scale (GB/s) Triad (GB/s)
1 4.9680 5.9307 3.9643 4.8958
2 2.6948 2.8451 2.2604 2.8002
4 3.1589 2.5527 2.6755 3.6559
8 3.1554 2.0491 1.8113 3.6758
16 3.1656 2.6675 2.1563 3.3987
32 2.6239 2.3287 2.3406 3.3284

D7.4.2 Benchmarking and Performance Modelling on Tier-0 systems

PRACE-1IP-WP7 30.06.2012 6

c) Cache Miss Performance
The RandomAccess benchmark measures cache-miss performance by identifying the number
of memory locations that can be randomly updated in one second. It reports one figure, Giga
updates per second (GUP/s) and can be run on multiple cores and nodes. In this case, the tests
were performed on a single node only.

D7.4.2 Benchmarking and Performance Modelling on Tier-0 systems

PRACE-1IP-WP7 30.06.2012 7

d) Memory Bandwidth Compared to Flops

Memory access is commonly a restriction on computation speeds and this ratio quantifies the
theoretical maximum bytes that can be delivered from memory for each flop. This is a derived
ratio using previous results.

The run settings are provided where these results are first stated in this document, T1.1 for the
LINPACK assessment and T1.4 for the STREAM memory bandwidth assessment, and so
they are not repeated here.

Cores/nodes Processes STREAM average
bandwidth of 1 node (GB/s)

LINPACK
(GFlop/s)

Byte/Flop

32/1 32 84.9728 247.400 0.34

The result slightly differs according to the system’s condition. For more clarity, we run both
benchmarks at the same time. The result is as follows.

• (N, NB, P, Q): 115712, 128, 4, 8
• (HPL_Tflops): 0.257356
• (STREAM Geometric Mean): 1.97008

o StarSTREAM_Copy=1.86597
o StarSTREAM_Scale=1.82477
o StarSTREAM_Add=2.05364
o StarSTREAM_Triad=2.13594

 Byte/Flop = (1.97008 * 1000) MByte/s * (32) Procs / (0.257356 * 1000000) Mflop/s =
0.244962

D7.4.2 Benchmarking and Performance Modelling on Tier-0 systems

PRACE-1IP-WP7 30.06.2012 8

References

[1] HPCC: http://icl.cs.utk.edu/hpcc/
[2] Report on available performance analysis and benchmark tools, PRACE Preparatory

Phase Deliverable D6.3.1, November 2008.
[3] Technical Assessment Report of Prototype Systems, PRACE Preparatory Phase

Deliverable D5.2, December 2009
[4] JuBE framework, http://www2.fz-juelich.de/jsc/jube/
[5] P-SNAP homepage, http://www.ccs3.lanl.gov/pal/software/psnap/
[6] mixedMode, http://www2.epcc.ed.ac.uk/~markb/mpiopenmpbench/intro.html

http://icl.cs.utk.edu/hpcc/�
http://www2.fz-juelich.de/jsc/jube/�
http://www.ccs3.lanl.gov/pal/software/psnap/�
http://www2.epcc.ed.ac.uk/~markb/mpiopenmpbench/intro.html�

D7.4.2 Benchmarking and Performance Modelling on Tier-0 systems

PRACE-1IP-WP7 30.06.2012 9

Appendix 1: HPCC Source Code Change

To perform interesting benchmark only, we introduce a new variable called "BenchTest“
which is provided from the command line argument.

/* A parameter for the HPCC Benchmarks
 BenchTest == 0 : Perform all benchmarks
 BenchTest == 11 : Perform T1.1 LINPACK Sustained Flops
 BenchTest == 14 : Perform T1.4 Sustained Memory Bandwidth
 BenchTest == 16 : Perform T1.6 Cache Miss Performance
 BenchTest == 21 : Perform T2.1 Memory Bandwidth Compared to Flops
*/

It handles whether each benchmark is performed in the following way:

e.g., StarDGEMM, which is not run unless the full package is executed
 if(BenchTest == 0) {
 if (params.RunStarDGEMM) HPCC_StarDGEMM(¶ms);
} // End of StarDGEMM

e.g., HPL, which is run for LINPACK and Memory Bandwidth VS Flops
if(BenchTest == 0 || BenchTest == 11 || BenchTest == 21) {
if (params.RunHPL) HPL_main(argc, argv, ¶ms.HPLrdata, ¶ms.Failure);
} // End of HPL

It must be possible to easily handle by setting the parameter (RunHPL, ...) from input file.

D7.4.2 Benchmarking and Performance Modelling on Tier-0 systems

PRACE-1IP-WP7 30.06.2012 10

Appendix 2: Rung HPCC Tests on JuBE Environment

JuBE benchmark provides the integrated job compilation/execution/analysis environment. To
make use of it,

1) Install (download and unpack) JuBE framework
2) Locate the source code (to run) on relevant place. Usually codes are located under

/application/package_name.
3) Set system-specific environments.

a. /platform/platform.xml
It contains compilation-specific configurations. Example on CURIE given
below.

b. /platform/System_Name/job_submission_script.sh
It contains default job submission script format. Example on CURIE given
below.

4) Set code-specific environments.
a. /applications/code_name/compile.xml

It contains specific compilation option for this benchmark. Example of HPCC
on CURIE given below.

b. /applications/code_name/execute.xml
It contains specific job submission option for this benchmark. Example of
HPCC on CURIE given below.

c. /applications/code_name/ (analyse.xml, result.xml, verify.xml)
Those files are also provided if other tests are needed. In principle, only above
two files are enough for running the task.

5) Set problem-specific environments.
a. /applications/code_name/prepare.xml

Have the parameter for individual problem set. Example of HPL with 256 code
in HPCC on CURIE given below.

b. /applications/code_name/submission_task_name.xml
In principle, JuBE supports multiple independent job submissions at the same
time. However, on CURIE, it was not working fine (only the first resource
request is submitted and all simulation runs are assigned on that allocation in
tandem). So we provide separate execution sets per task. Example of HPL
with 256 code in HPCC on CURIE given below.

6) Run the task. To run it,
On the banchmark code’s location, type
../../bench/jube submission_task_name.xml

===== /platform/platform.xml =====
 <platform name="Intel-Nehalem-CURIE">
 <params
 make = "gmake"
 rm = "rm -f"
 ar = "ar"
 arflags = "-rs"
 ranlib = "ranlib"

D7.4.2 Benchmarking and Performance Modelling on Tier-0 systems

PRACE-1IP-WP7 30.06.2012 11

 cpp = "cpp"
 cppflags = "-P"

 cc = "icc"
 cflags = "-O3 -ftz -ip -ipo"

 cxx = "icpc"
 cxxflags = "-DMPICH_IGNORE_CXX_SEEK"

 f77 = "ifort"
 f90 = "ifort"

 mpi_cc = "mpicc"
 mpi_cxx = "mpicxx"

 mpi_f77 = "mpif77"
 f77flags = "-O3 -ftz -ip -ipo"

 mpi_f90 = "mpif90"
 f90flags = "-O3 -ftz -ip -ipo"

 ldflags = ""

 mpi_dir = ""
 mpi_lib = ""
 mpi_inc = ""
 mpi_bin = ""

 blas_dir = "-L/usr/local/Intel_compilers/c/composerxe-
2011.3.174/mkl/lib/intel64"
 blas_lib = "-lmkl_intel_lp64 -lmkl_sequential -lmkl_core -lm"

 lapack_dir = "-L/usr/local/Intel_compilers/c/composerxe-
2011.3.174/mkl/lib/intel64"
 lapack_lib = "-lmkl_intel_lp64 -lmkl_sequential -lmkl_core -lm"

 fftw3_dir = "-L/usr/local/fftw3-3.2.2/lib"
 fftw3_lib = "-lfftw3 -lm"
 fftw3_inc = "-I/usr/local/fftw3-3.2.2/include"

 fftw2_dir = "-L/usr/local/fftw2-2.1.5/lib"
 fftw2_lib = "-ldfftw -ldfftw_mpi -ldrfftw -ldrfftw_mpi"
 fftw2_inc = "-I/usr/local/fftw2-2.1.5/include"
 netcdf3_dir = ""
 netcdf3_lib = ""
 netcdf3_inc = ""

 module_cmd = "module load"
 />
 </platform>

D7.4.2 Benchmarking and Performance Modelling on Tier-0 systems

PRACE-1IP-WP7 30.06.2012 12

===== /platform/Intel-Nehalem-CURIE/intel_PBSsubmit.job.in =====
#!/bin/bash -x

#MSUB -r #BENCHNAME#
#MSUB -N #NODES#
#MSUB -n #TASKS#
#MSUB -c #THREADSPERTASK#
#MSUB -T #TIME_LIMIT#
#MSUB -o #STDOUTLOGFILE#
#MSUB -e #STDERRLOGFILE#
set -x
cd ${BRIDGE_MSUB_PWD}
echo "<jobstart at=\"`date`\" />" >> #OUTDIR#/start_info.xml
#ENV#
#PREPROCESS#
#MEASUREMENT# #STARTER# #ARGS_STARTER# #EXECUTABLE#
#ARGS_EXECUTABLE#
#POSTPROCESS#
echo "<jobend at=\"`date`\" />" >> #OUTDIR#/end_info.xml

===== /applications/hpcc/compile.xml =====
<compile cname="Intel-Nehalem-CURIE">
 <src directory="./src" files="*" />

 <substitute infile="hpl/Make.PRACE.jube" outfile="hpl/Make.PRACE">
 <sub from="#MPI_DIR#" to="$mpi_dir" />
 <sub from="#MPI_INC#" to="$mpi_inc" />
 <sub from="#MPI_LIB#" to="$mpi_lib" />
 <sub from="#BLAS_DIR#" to="$blas_dir" />
 <sub from="#BLAS_LIB#" to="$blas_dir -lmkl_intel_lp64 -lmkl_intel_thread -
lmkl_core -lm -lpthread" />
 <!--sub from="#BLAS_LIB#" to="$blas_dir $blas_lib" /-->

 <sub from="#BLAS_INC#" to="$blas_dir" />
 <sub from="#F2CDEFS#" to="" />
 <sub from="#CFLAGS#" to="$cflags -O3 -ftz -ip -openmp" />
 <sub from="#LDFLAGS#" to="$ldflags -nofor-main" />

 <sub from="#MPI_CC#" to="$mpi_cc" />
 <sub from="#MPI_F90#" to="$mpi_f90" />

 <sub from="#AR#" to="$ar" />
 <sub from="#ARFLAGS#" to="$arflags" />
 <sub from="#RANLIB#" to="$ranlib" />

 </substitute>

 <substitute infile="hpl/lib/arch/build/Makefile.intelSTREAM"

D7.4.2 Benchmarking and Performance Modelling on Tier-0 systems

PRACE-1IP-WP7 30.06.2012 13

 outfile="hpl/lib/arch/build/Makefile.hpcc">
 </substitute>

 <command>make arch=PRACE;cp hpcc $execname</command>

</compile>

===== /applications/hpcc/execute.xml =====
<execute cname="Intel-Nehalem-CURIE">

 <input files="../../platform/Intel-Nehalem-CURIE/intel_PBSsubmit.job.in" />

 <substitute infile="intel_PBSsubmit.job.in" outfile="intel_PBSsubmit.job">
 <sub from="#OUTDIR#" to="$outdir" />
 <sub from="#BENCHNAME#" to="$benchname" />
 <sub from="#STDOUTLOGFILE#" to="$stdoutlogfile" />
 <sub from="#STDERRLOGFILE#" to="$stderrlogfile" />
 <sub from="#NODES#" to="$nodes" />
 <sub from="#TASKS#" to="$tasks" />
 <sub from="#TASKSPERNODE#" to="$taskspernode" />
 <sub from="#THREADSPERTASK#" to="$threadspertask" />
 <sub from="#TIME_LIMIT#" to="$timelimit" />
 <sub from="#NOTIFICATION#" to="n" />
 <sub from="#NOTIFY_EMAIL#" to="" />
 <sub from="#EXECUTABLE#" to="$executable" />
 <sub from="#ENV#" to="$env" />
 <sub from="#PREPROCESS#" to="export
OMP_NUM_THREADS=${BRIDGE_MSUB_NCORE}" />
 <sub from="#POSTPROCESS#" to="cat hpccoutf.txt" />
 <sub from="#STARTER#" to="ccc_mprun" />
 <sub from="#ARGS_STARTER#" to="" />

<!--
 <sub from="#ARGS_STARTER#" to="-n `$nodes * $taskpernode`" />
-->

 <sub from="#MEASUREMENT#" to="time" />
 <sub from="#ARGS_EXECUTABLE#" to="" />
 <sub from="#MEMORYPERTASK#" to="" />
 </substitute>

 <command>ccc_msub intel_PBSsubmit.job</command>
</execute>

===== /applications/hpcc/prepare.xml =====
%%% Case for HPL benchmark with 256 cores
<prepare cname="HPL256">
 <input files="src/hpccinf.txt.jube" />
 <substitute infile="hpccinf.txt.jube" outfile="hpccinf.txt">

D7.4.2 Benchmarking and Performance Modelling on Tier-0 systems

PRACE-1IP-WP7 30.06.2012 14

<sub from="#HPLNN#" to="1" /> <!-- basic -->
<sub from="#HPLN#" to="327680" /> <!-- basic -->
<sub from="#HPLNNBS#" to="1" /> <!-- basic -->
<sub from="#HPLNBS#" to="128" /> <!-- basic -->
<sub from="#HPLNGRID#" to="1" /> <!-- basic -->
<sub from="#HPLPS#" to="16" /> <!-- basic -->
<sub from="#HPLQS#" to="16" /> <!-- basic -->
<sub from="#HPLTHRESHOLD#" to="16.0" /> <!-- advanced -->
<sub from="#HPLNPFACTS#" to="1" /> <!-- advanced -->
<sub from="#HPLPFACTS#" to="2" /> <!-- advanced -->
<sub from="#HPLNNBMINS#" to="1" /> <!-- advanced -->
<sub from="#HPLNBMINS#" to="4" /> <!-- advanced -->
<sub from="#HPLNNDIVS#" to="1" /> <!-- advanced -->
<sub from="#HPLNDIVS#" to="2" /> <!-- advanced -->
<sub from="#HPLNRFACTS#" to="1" /> <!-- advanced -->
<sub from="#HPLRFACTS#" to="1" /> <!-- advanced -->
<sub from="#HPLNBROADCAST#" to="1" /> <!-- advanced -->
<sub from="#HPLBROADCAST#" to="1" /> <!-- advanced -->
<sub from="#HPLNDEPTHS#" to="1" /> <!-- advanced -->
<sub from="#HPLDEPTHS#" to="1" /> <!-- advanced -->
<sub from="#HPLSWAP#" to="2" /> <!-- advanced -->
<sub from="#HPLSWAPTHRESHOLD#" to="64" /> <!-- advanced -->
<sub from="#HPLNADDPTRANSN#" to="0" /> <!-- more for PTRANS -->
<sub from="#HPLNADDPTRANSNB#" to="0" /> <!-- more for PTRANS -->
<sub from="#HPLADDPTRANSN#" to="" /> <!-- more for PTRANS -->
<sub from="#HPLADDPTRANSNB#" to="" /> <!-- more for PTRANS -->
 </substitute>
</prepare>

===== /applications/hpcc/specific_task_name.xml =====
%%% Case for HPL benchmark with 256 cores
<bench name="HPCC" platform="Intel-Nehalem-CURIE" >
<benchmark name="HPCC-T1.1-HPL" active="1">

 <!-- version="reuse|new" -->
 <compile cname="$platform" version="reuse" />

 <tasks threadspertask="1" taskspernode="32" nodes="8" />
 <prepare cname="HPL256" />

 <execution iteration="1" cname="$platform" timelimit="14400" />
 <verify cname="Generic" />
 <analyse cname="Generic" />
</benchmark>
</bench>

	1.1 HPCC
	1.1.1 Summary
	1.1.2 TestCase
	1.1.3 Results and Analysis
	References
	Appendix 1: HPCC Source Code Change
	Appendix 2: Rung HPCC Tests on JuBE Environment

