How to run VASP

Part 2: Running big

Quick summary

- Everything from previous slides apply!
- Less MPI ranks / compute node
- SCALAPACK is a must, ELPAversion of VASP even better.
- Choice of MPI-library can be influential.
- LPLANE = .TRUE. (default). Check
 NGZ vs cores & NPAR
- Minimize file input/output (disable STOPCAR/WAVECAR etc)

Big computer =>
Big simulation!

VASP: GaAs supercell (5900 atoms)

Standard DFT calculation

VASP: Parallel scaling

Standard DFT for FeCo alloy (53 atoms)

Cores/node: VASP and memory bandwidth

- VASP is limited by memory bandwidth
- Can't utilize all cores on a multi-core machine!

CPU

A breakdown of how the 76.8% total CPU time was spent:

The per-core performance is memory-bound. Use a profiler to identify time-consuming loops and check their cache performance.

Little time is spent in vectorized instructions. Check the compiler's vectorization advice to see why key loops could not be vectorized.

MPI

Of the 23.2% total time spent in MPI calls:

Time in collective calls	95.0%	
Time in point-to-point calls	5.0%	I .
Effective process collective rate	416 MB/s	
Effective process point-to-point rate	59.8 MB/s	

Most of the time is spent in collective calls with an average transfer rate. Using larger messages and overlapping communication and computation may increase the effective transfer rate.

VASP intra-node scaling on Sandy Bridge

128-atom semiconductor, regular DFT

VASP on Lindgren: ELPA vs SCALAPACK

MgH2 (1269 atoms)

http://elpa.rzg.mpg.de/

Q Search Site

only in current section

Home

Documents

ELPA-Software

Publications

Home

Navigation

- About ELPA
- Partners
- Goals
- Software
- Publications
- External links

Log in

Login Name

Password

Log in

Eigenvalue SoLvers for Petaflop-Applications (ELPA)

Fritz-Haber-Institut der Max-Planck-Gesellschaft

News

VASP on Triolith: ELPA vs SCALAPACK (Intel MPI + MKL)

MgH2 (1269 atoms)

VASP: Runtime split into subroutines

(504 atom supercell with 2000 bands)

EDIAG/ORTCH starts to dominate (SCALAPACK)

LPLANE

- Activates "plane-wise data distribution in real-space". This
 affects parallelization, especially of Fast-Fourier transforms.
- Default value is .TRUE.
- From the manual:
 make sure that NGZ > 3*cores/NPAR
- Best load balance with NGZ=n*NPAR
- Example: (NGZ 64) == 16*(NPAR 4)

Check for LPLANE = .TRUE.

```
$ grep "minimum data exchange" OUTCAR
parallel 3D FFT for wavefunctions:
   minimum data exchange during FFTs selected (reduces bandwidth)
parallel 3D FFT for charge:
   minimum data exchange during FFTs selected (reduces bandwidth)
```

Check load balance in OUTCAR

32 compute nodes:

```
...
real space projection operators:
  total allocation : 638386.16 KBytes
  max/ min on nodes : 40667.10 38042.62
...
```

128 compute nodes:

```
real space projection operators:
  total allocation : 638386.16 KBytes
  max/ min on nodes : 59273.56 41218.42
```

NGZ: case study

- 128-atom semiconductor
- PREC=Accurate / ENCUT=400 eV gives NGZ = 60
- PREC=Accurate / ENCUT=500 eV gives NGZ = 70
- Linear parallel scaling from 5 to 6 compute nodes = 120% speed.
- 400 eV gives 120%.
- 500 eV gives 108% (11% loss). Why? 500 eV has more compute work per core. Should scale better!
- 6 nodes means NPAR=6 with NGZ=70. **MOD(70,6)** ≠ **0**

MPI-libraries

- Don't compile your own OpenMPI from source, e.g. on a Cray machine, use CrayMPI!
- At NSC in Sweden, we rely on Intel MPI.
- Intel MPI 4.0.3 works fine with VASP. Version 4.1+ have problems with hybrid-DFT calculations. You need to set I_MPI_COMPATIBILITY=4.
- MVAPICH 1.8-2.0 also ok.
- OpenMPI usually slower than IMPI/Mvapich for VASP.
- Process pinning / core-binding is essential (10-20% faster). IMPI pins automatically, OpenMPI does not.

Hybrid-DFT case study

- A 128-atom supercell with HSE06.
- Need high accuracy, 4-8 k-points.
- The research groups typically runs this simulation on 8-24 nodes (sometimes with 8 cores/node).
- Speed about 9 SCF steps/hour.
- Is there a better way to run? Can k-point parallelization help?

VASP: 128 atom hybrid-DFT job (HSE06) k-point parallelization with KPAR=4

Hybrid-DFT case study

- Switching to VASP 5.3.5 from 5.3.3 (faster hybrids) ≈ 5%
- Recommended better, already existing binaries. ≈ 5%
- K-point parallelization ≈ 50%
- Changed NGZ (extra basis functions for free!) ≈ 10%
- Boosted cores/node from 8 to 12. ≈ 10%
- **Final outcome was 2x performance boost** at their current job size (24 compute nodes).
- Proof-of-concept for further scaling up to at least 64 compute nodes