TSEA28, Datorteknik Y Guest Lecture 15 May 2013

National Supercomputer Centre Network · Storage · Computing

Niclas Andersson, nican@nsc.liu.se National Supercomputer Centre, Sweden

www.nsc.liu.se

Contents

- High Performance Computing
- Processors of today
 - examples: Intel, AMD, NVIDIA, ...
- National Supercomputer Centre
- Large scale computing resources
- Applications

Slides: http://www.nsc.liu.se/~nican/education/tsea28_2013.pdf

What is a Supercomputer?

Cray-1A

26 m

#6 on top500: SuperMUC (#1 in Europe)

21 m

What are the similarities?

The most important aspects for High Performance Computing (HPC)

- Floating point operations per second
- Memory bandwidth
- Interconnect performance (bandwidth, latency)
- Parallelism, parallelism, parallelism
- Power consumption
- Efficient algorithms and good programming

Parallelism, parallelism, parallelism

In core

- Many ALUs
- Pipelining
- Vectors; SSE, AVX
- Instructions: FMA, ...
- Out-of-order execution
 - Shadow registers
 - Speculative execution
- Hyper threading (Intel)

On chip

- Many cores
- Multi level, multi port caches

In server

- Many sockets
- Memory channels
- Co-processors

In system

- Many servers
- Fast interconnect, Infiniband
 On site
- Many systems
- Secondary storage

On larger scale

- Collaborative networks
- Grid, Cloud, ...

Example

Triolith with SandyBridge (Intel Xeon E5-2660)

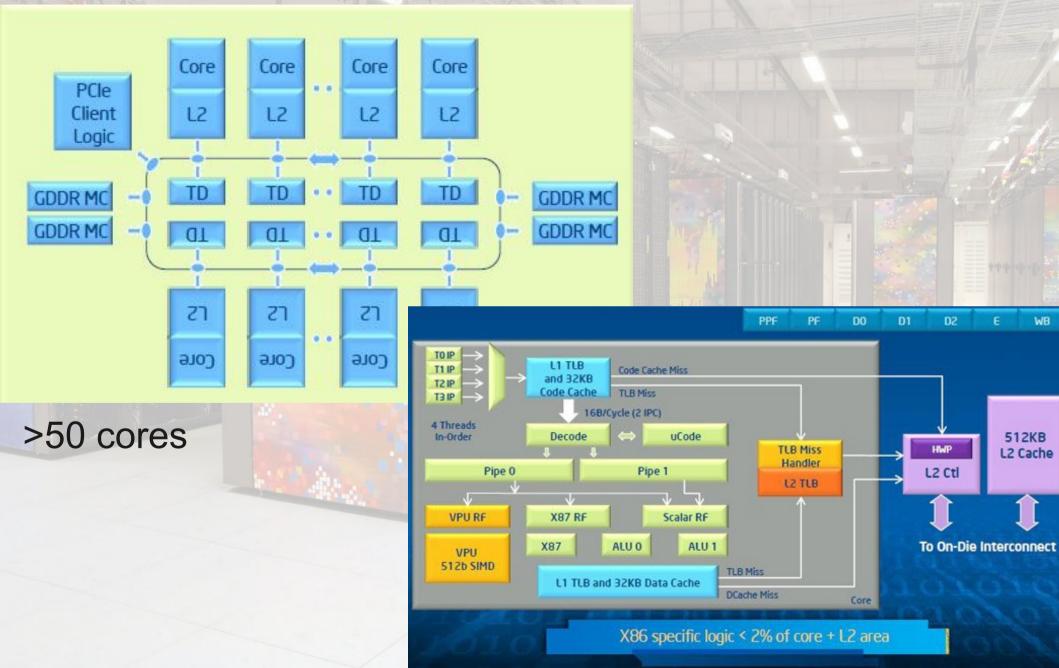
- 2.2 GHz clock (Turbo 3.0 GHz)
- 8 Flop / clock / core
- 8 core / socket
- 2 socket / server
- 1200 compute servers
- 2.2 * 8 * 8 * 2 * 1200 = 338 Tflop/s

Hybrid computing

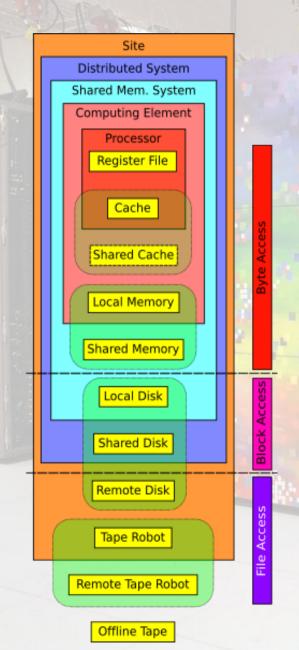
Merge traditional CPU with high performance co-processor Examples:

- NVIDIA Kepler
 - General-purpose computing on graphics processing units (GPGPU)
 - Open Computing Language (OpenCL)
 - NVIDIA CUDA
- Intel Xeon Phi
 - Accelerator
 - Intel Compilers & Tools

NVIDIA Kepler (GK110)


NVIDIA GK110 SMX Streaming Multiprocessor

- 192 FP32/INT
- 64 FP64
- Kepler: 3 x perf/watt to Fermi
- Dynamic parallelism
- GPUdirect


MX																			
_	War	n Sel	odulor			Wa	m Sahar		tructi	on Ca		n Sak	odular		_	Wa	ro Sabar	lulor	
Warp Scheduler				Warp Scheduler				Warp Scheduler				Warp Scheduler							
Dispatch Dispatch			Dispatch Dispatch			0	Dispatch Dispatch			cn	Dispatch Dispatch			icn					
	Register File (65,536 x 32-bit)																		
÷	÷	÷	+	÷	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	-
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SF
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/8T	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SF
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SF
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SF
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LO/ST	s
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	L0/ST	sr
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	sı
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SF
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	sı
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LO/ST	sı
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	sı
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	sı
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SF
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SF
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LO/ST	sı
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core		Core	DP Unit	Core	Core	Core	DP Unit	LAIST	sı
	interconnect Network 64 KB Shared Memory / L1 Cache																		
	48 KB Read-Only Data Cache																		
	Tex		Tex	:		Tex	Tex		Tex			Tex		Tex			Tex		
	Tex		Tex			Tex		Tex			Tex		Tex			Tex		Tex	

Intel Xeon Phi

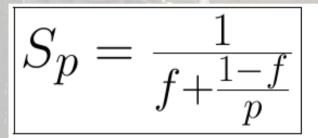
Storage hierachy

- Moving data is expensive
 - Distance from ALU
 - Performance (bandwidth & latency)
 - Size
 - Cost (investment & energy)

Bandwidth vs. Latency

SNAP – SNAil based data transfer Protocol (2005)

- Payload/packet: 4.7 GB
- Parallel protocol: 2 packets/transfer
- Faster than ADSL on short distance
- Outperforms IP over avian carriers (1999)


Never underestimate the bandwith of a truckload of tapes on a highway!

Efficient Algorithms

- Utilize available parallelism in the problem
- Adaptive
- Balance load statically and/or dynamically
- Latency tolerant

Scalable
 Amdahl's Law

- S_p speedup
 - f Sequential fraction
 - p Number of processors

Programming

Fortran (most common), C, C++

```
    Message Passing interface (MPI)
```

```
#include <stdio.h>
#include "mpi.h"
int main( argc, argv )
int argc;
char **argv;
{
    int rank, size;
    MPI_Init( &argc, &argv );
    MPI_Comm_size( MPI_COMM_WORLD, &size );
    MPI_Comm_rank( MPI_COMM_WORLD, &rank );
    printf( "Hello world from process %d of %d\n", rank, size );
    MPI_Finalize();
    return 0;
```

% mpicc -o helloworld helloworld.c
% mpirun -np 4 helloworld
Hello world from process 0 of 4
Hello world from process 3 of 4
Hello world from process 1 of 4
Hello world from process 2 of 4
%

return 0;

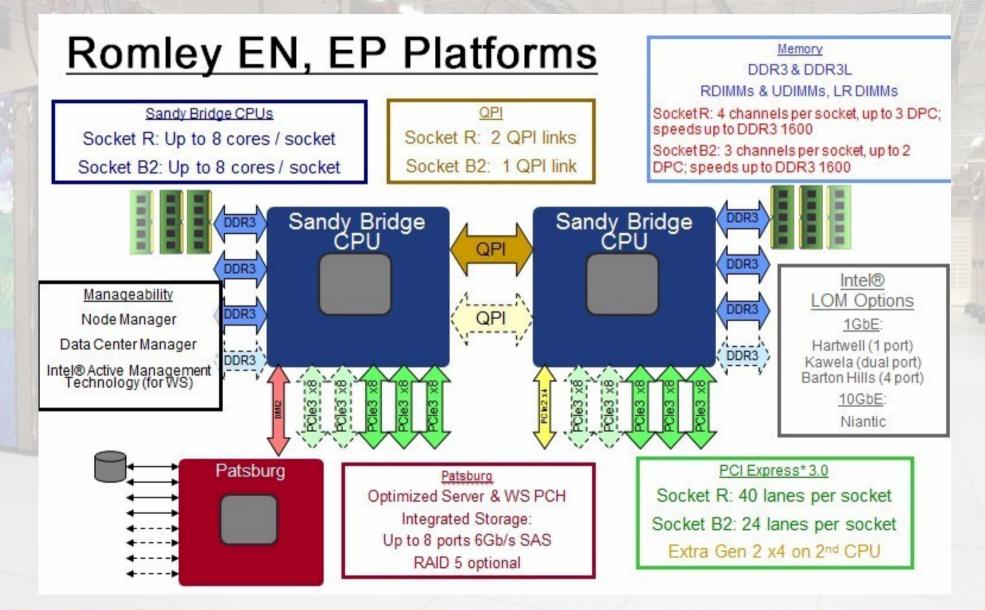
More MPI: sending in a ring

#include <stdio.h></stdio.h>	9. maior o ning ning
#include "mpi.h"	% mpicc -o ring ring.
	% <u>mpirun</u> -np 4 ring
int main(argc, argv)	10
	Process 0 got 10
int argc;	22
char **argv;	Process 0 got 22
{	-1
int rank, value, size;	Process 0 got -1
MPI_Status status;	Process 3 got 10
	Process 3 got 22
<u>MPI_Init</u> (&argc, &argv);	Process 3 got -1
<pre>MPI_Comm_rank(MPI_COMM_WORLD, &rank);</pre>	Process 2 got 10
<pre>MPI_Comm_size(MPI_COMM_WORLD, &size);</pre>	Process 2 got 22
do {	Process 2 got -1
if (rank == 0) {	Process 1 got 10
scanf("%d", &value);	Process 1 got 22
<pre>MPI_Send(&value, 1, MPI_INT, rank + 1, 0, MPI_COMM_WORLD);</pre>	Process 1 got -1
}	%
else {	
<pre>MPI_Recv(&value, 1, MPI_INT, rank - 1, 0, MPI_COMM_WORLD,</pre>	
&status);	
if (rank < size - 1)	
<pre>MPI_Send(&value, 1, MPI_INT, rank + 1, 0, MPI_COMM_WORLD);</pre>	
}	
printf("Process %d got %d∖n", rank, value);	
} while (value >= 0);	
<pre>MPI Finalize();</pre>	

The Base: **MPI** Init **MPI** Finalize **MPI** Comm size MPI Comm rank **MPI** Send **MPI** Recv

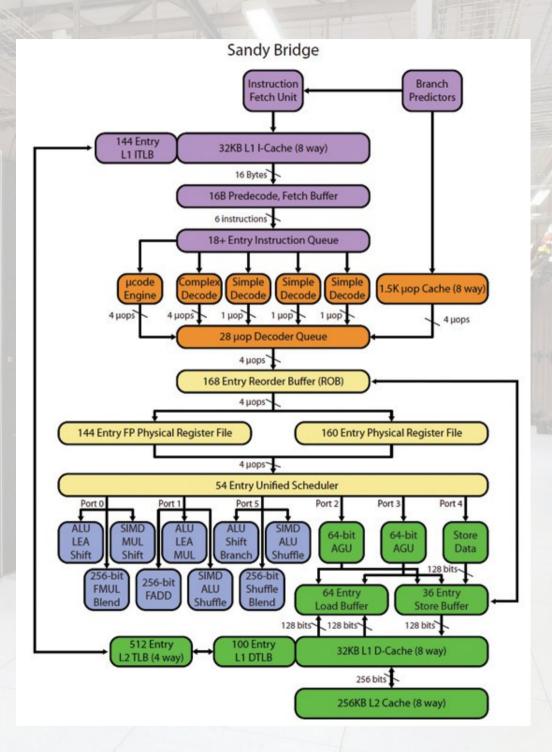
MPI primitives

Communication modes: Blocking, Non-blocking, Buffered, Synchronous, Ready Collective communication Group and communicator management **Derived datatypes** Virtual topologies **One-sided** communication **Dynamic processes** Parallel I/O



Intel Tick-Tock

Intel [®] Core [™] Microarchitecture		Intel [®] Microa Codename N		Intel [®] Microa Codename S Bridge		New Intel® Microarchitecture		
Merom	Penryn	Nehalem	Westmere	Sandy Bridge	lvy Bridge	Future	Future	
65nm	45nm	45nm	32nm	32nm	22nm	22nm		
New Micro- architecture	New Process Technology	New Micro- architecture	New Process Technology	New Micro- architecture	New Process Technology	New Micro- architecture	New Process Technology	
ТОСК	ТІСК	ТОСК	ТІСК	тоск	ТІСК	тоск	ТІСК	



Intel Sandybridge

Intel Sandy Bridge Microarchitecture

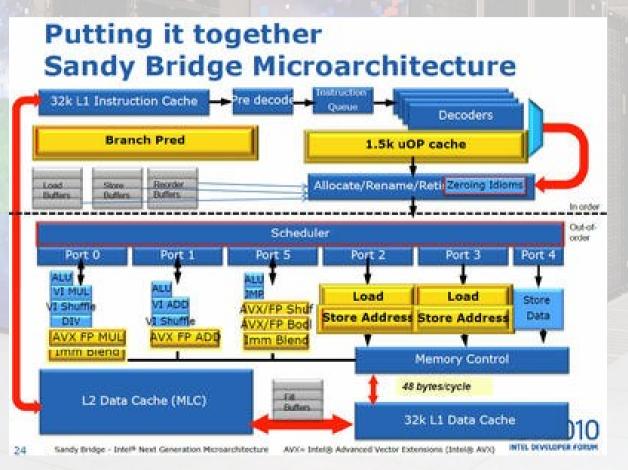
Cache Latencies

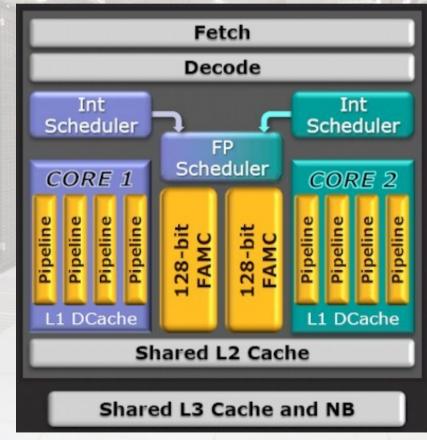
Cache sizes and access time on Nehalem

Access time in CPU cycles

Intel SandyBridge (Xeon E5)

- Four memory channels (DDR3-1600) on socket R
- AVX 256 bit vectors
- Larger L3 cache up to 20 MB
- (2), 4, 8 cores
- Turbo Mode (aggressive over and underclocking)
- TDP: ~ 80-130 W
- 1.8 3.6 GHz (Turbo: 4.0)


Microarchitectures


Intel SandyBridge

One core

AMD Bulldozer

One module, two cores

National Supercomputer Centre Network · Storage · Computing

National Supercomputer Center in Sweden

- Provider of leading edge supercomputing resources to NSC partners SMHI and SAAB and to members of academic institutions troughout Sweden.
- The SNIC*-center at Linköping University
- Independent organisation within Linköping University
- Staff of 30 people
- Created 1989 when Linköping University purchased a Cray XMP in collaboration with SAAB.

*) Swedish National Infrastructure for Computing

History of NSC

- 1983 Saab bought a Cray 1A (second hand) for simulation of JAS. Research Council bought 2000 h/year for academic research. (1 Mw)
- 1989 NSC started. Cray X-MP/48 (4 proc, 8 Mw)
- 1993 Cray Y-MP/464 (4 proc, later 8, 64 Mw)
- 1995 <u>Cray C90</u> (6 proc, 256 Mw)
- 1997 <u>Cray T3E (new)</u> (272 proc, 45 GB)
- 1999 SGI Onyx2 at LiU
- 2000 <u>SGI 2K</u>

Clusters

- 1999 Ingvar
- 2002 Monolith, <u>Bris</u>, Maxwell
- 2004 <u>Blixt</u>
- 2006 Darkstar
- 2007 Neolith, <u>Bore</u>/Gimle, Skylord (27, 29+31+32, 30)
- 2010 <u>Byvind</u>
- 2012 Triolith, Krypton, Skywalker (40,39,38)

Major Partners and Funding Organisations

Meta-center for six supercomputer centers in Sweden:

NSC, PDC, HPC2N, UPPMAX, C3SE, LUNARC

www.snic.vr.se

SSAH www.smhi.se

Swedish Meteorological and Hydrological Institute

Swedish Aeroplane AB

Nordic e-Infrastructure Collaboration

Linköping University

Examples of Services

- SNIC General Purpose Computations
- Targeted Research Areas:
 - Electronic Structures
 - Climate
- Numerical Weather
 Prediction
- WLCG Tier1&2 storage and computation

- Meteorological Archive and Retrieval System – MARS
- Deployment and Optimization of Software/Applications
- SNIC Infrastructure services
- Security Planning and Forensics

Hardware Resources (approximate numbers)

Computing

- 34 000 processor cores
- 520 Teraflops (peak)

Disk Storage

- 4200 drives (compute servers uncounted)
- 7 Petabyte (raw) ≈
 5.3 Petabyte user space
- GPFS, Lustre, dCache

Tape Storage

- 4200 slots
- 3300 tapes (LTO5 and LTO4)
- 13 drives
- 2.5 Petabyte (raw)

External Network

- Redundant 10 Gb via LiU to SUNET
- Redundant 1 Gb to SMHI
- 10 Gb to WLCG Nordic Tier-1

Visit to NSC's computer room

When?

Triolith – Sweden's fastest computer

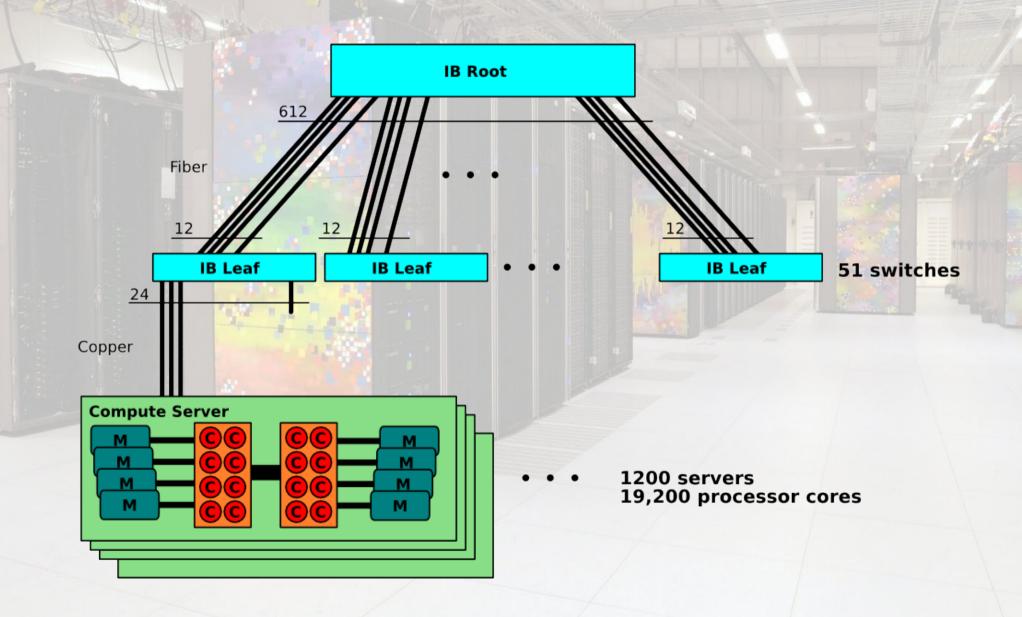
NS

Triolith Hardware

Compute Servers

- 1200 HP SL230s Gen8
 - 2 x Intel E5-2660 (2.2 GHz)
 - 1144 "Server A"
 - 32 GiB memory
 - 500 GB SATA disk
 - 56 "Server B"
 - 128 GiB memory
 - 2 x 500 GB SATA disk

Networks


- Mellanox FDR Infiniband
 - One 648p root-switch
 - 51 36p leaf-switches
 - 2:1 blocking
- Gigabit
- iLO

Auxiliary servers

• 4 HP DL380 Gen8

Infiniband Network Fat Tree Topology

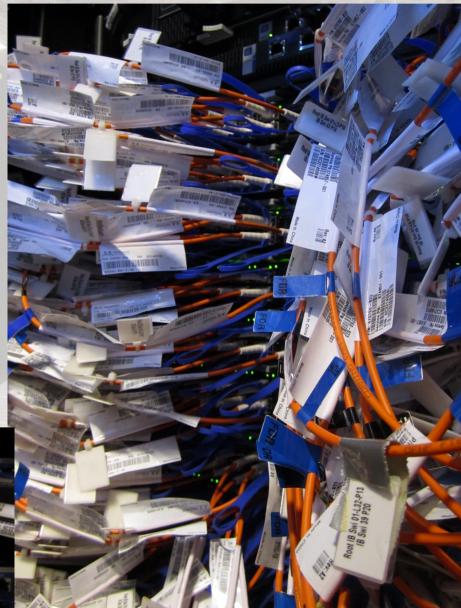
Triolith

In total:

- 1 200 HP compute servers
- 19 200 Intel cores
- 150 HP s6500 chassis
- 29 HP racks
- 337.92 Tflop/s (nominal)
- 42.75 TiB memory
- 75 TiB/s aggregate memory BW
- 67.2 Tb network bisection BW

Funded by Swedish Research Council (VR) via SNIC and Linköpings University

Installed and delivered by HP and Go Virtual



Triolith Linpack Perfomance

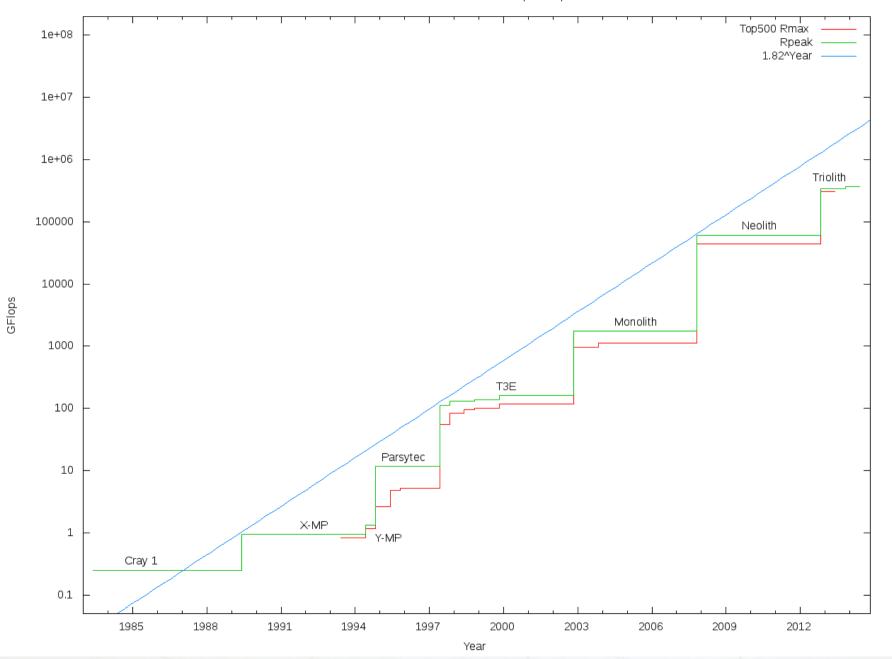
Linpack on 1196 servers 336.8 Tflop/s (nominal) **303.7** Tflop/s (Linpack) = 90.2 % efficiency **#83 on Top500** 380 kW during Linpack = 0.80 GFlop/J

Performance of one Triolith ≈

8 Neolith (2007 – 2012)

300 Monolith (2002 – 2007)

5,000 Powerful PCs (of today)


2,000,000 Cray-1A (1983 – 1989)

7,000,000,000 people performing 43,000 flop/s NS 🏀

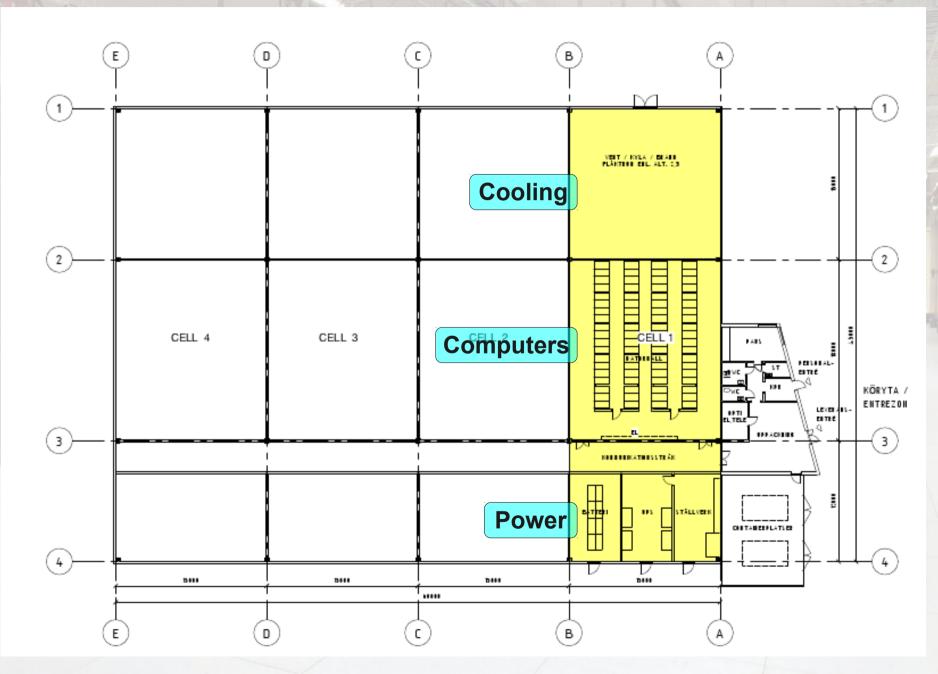

Performance of NSC's fastest supercomputers

New Computer Room: Kärnhuset

Existing Computer Rooms

Bunkern (2003 -)

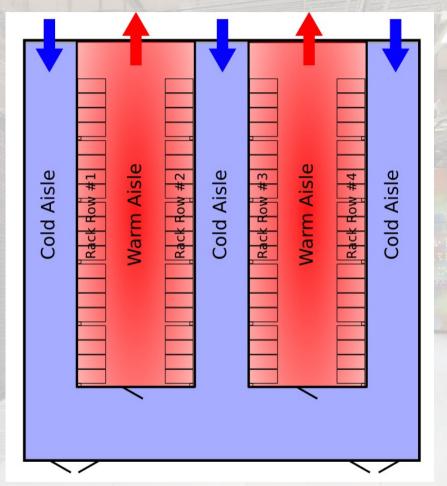
- 120 m² floor space for computer equipment
- Installation floor
- Air cooling
- Chiller and air-side economizer
- Fire suppression: water mist
- Max power and cooling: approx: 160 kW
- UPS: 10 minutes
- PUE: 1.28



Hangaren (2007 -)

- 240 m² floor space for computer equipment
- Installation floor
- Both open air cooled systems and water cooled encapsulated racks.
- District cooling
- Max power and cooling: approx. 840 kW
- UPS: 100% for 4 min + 15 % for 1 h
- PUE: 1.17
 - Power dist., UPS: ~ 8%
 - Pumps and Fans: ~ 6%
 - Auxiliary: ~3%
 - No power for producing cold water

New Computer Room Building (2013 –)



Kärnhuset, Cell #1

- Max 1 MW computer load
- Max 80 racks
- Air cooling
- Aisle separation from the start
- No installation floor
- District cooling
- Ready Summer 2013

Computer room: 280 m² Air handling: 100 m² Pipes and pumps: 100 m² Power distribution, UPS and batteries: 150 m² Access and transport: 40 m² Auxiliary: 60 m²

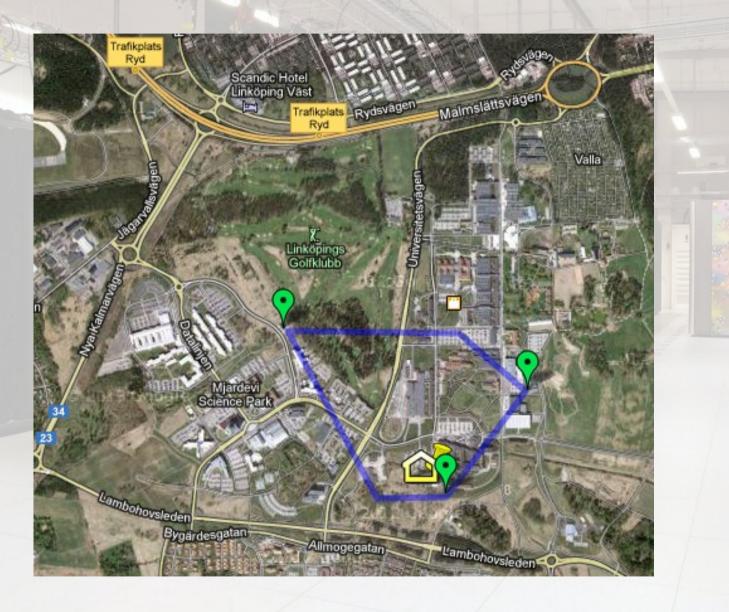
. . .

Kärnhuset, cell #2, #3, #4

- Water based cooling?
- Container shipping unit?

We are prepared to host more HPC in an efficient environment.

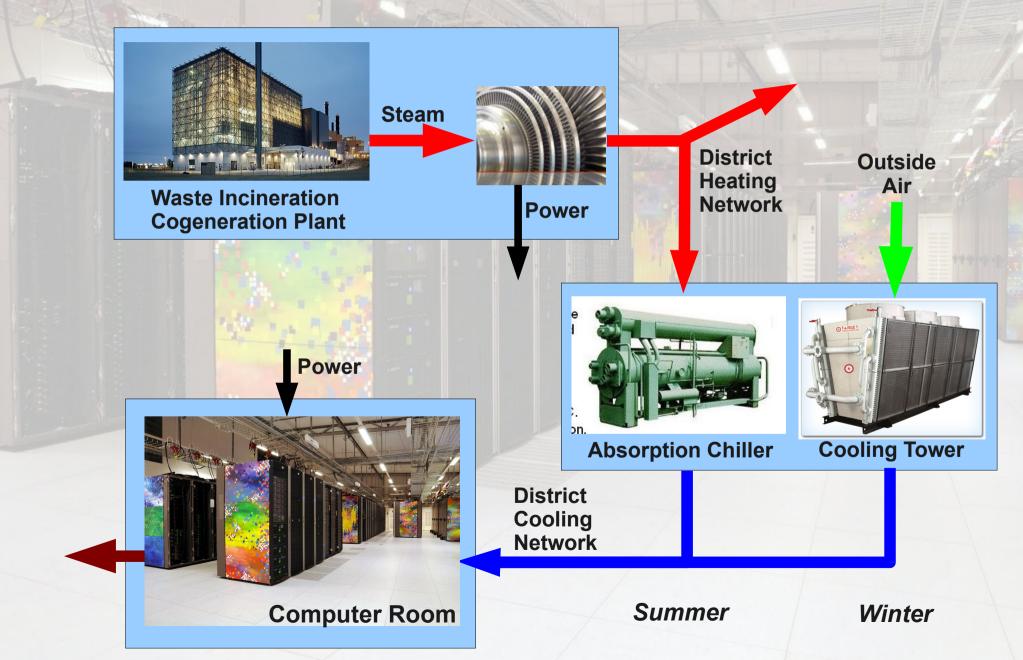
NS 🗱


Distribution Central

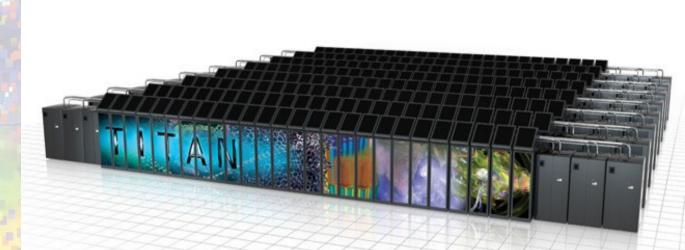
- Power distribution, 11 kV switchgear
- District Cooling production, powered by:
 - Summer: District Heating
 - Winter: Cooling Towers
- Run in parallel with two other distribution centrals within the district.

District Cooling

Co-generation of power and district heating



- Waste incineration plan
- In addition: boilers powered with:
 - Biomass
 - Coal & Rubber (energy recycling)
 - Petroleum (peak)
- 38 Hydroelectric plants



Combined Cooling, Heat, and Power (CCHP)

No. 1 on Top500: Titan

- 200 cabinets (404 m²)
- 18,688 nodes
 - AMD Opteron 6274
 - 32 GB memory
 - NVIDIA Tesla K20X
- 299,008 cores (CPU)700 TiB memory
- 3D Gemini network
- Peak: 27 petaFLOPS
- Linpack: 17,59 petaFLOPS
- 8,2 MW (peak)

Future: exaFLOPS

Targets by DARPA:

- 2018: 1 exaFLOPS
 - 2008: 1 petaFLOPS, LANL, IBM
 - 1998: 1 teraFLOPS, ASCI Red, Sandia
- 32-64 PiB memory
- ~20 MW
- MTTI: O(1 day)

Applications

NS 🏷

NS 🗱

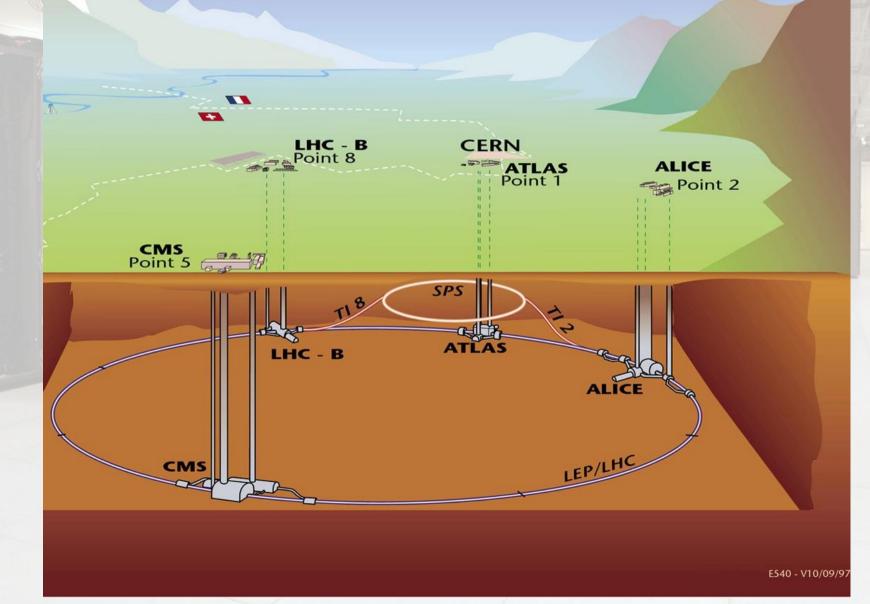
Applications

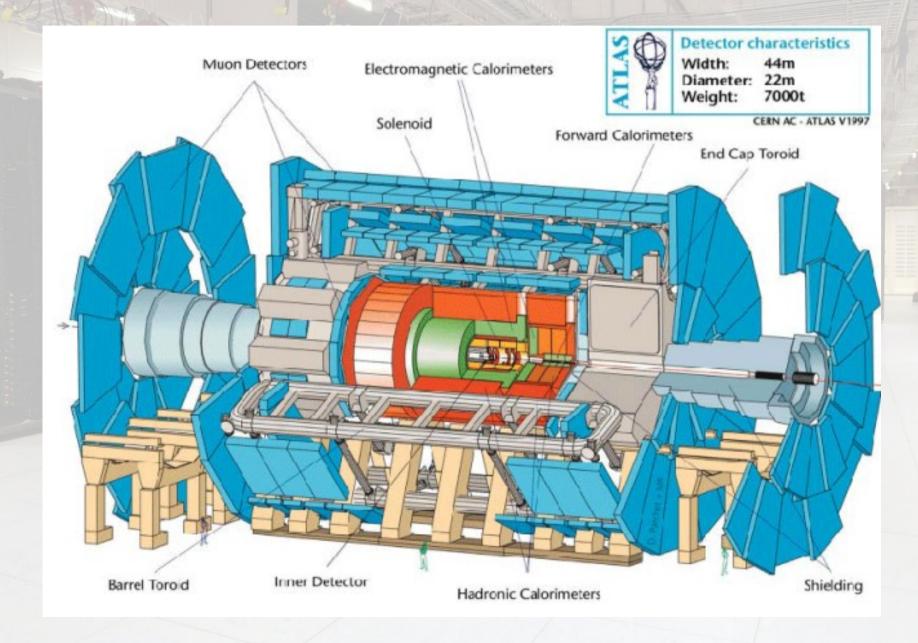
Climate

- Extreme weather
- Carbon, Methane, and Nitrogen
 cycles
- CO₂ sequestration
- Scenario replications, ensembles
- Increase time scale
- Computational Fluid Dynamics
 - Design of aircrafts, vehicles, submarines
 - Combustion, Turbulence

- Advanced materials
 - Solar cells
 - Fuel cells
 - Battery technology
 - Long term storage of Nuclear material
- Bioinformatics
 - Human genome
 - Drug design
- Astronomy
- Nuclear fusion
- Basic Research

Large Hadron Collider (LHC)



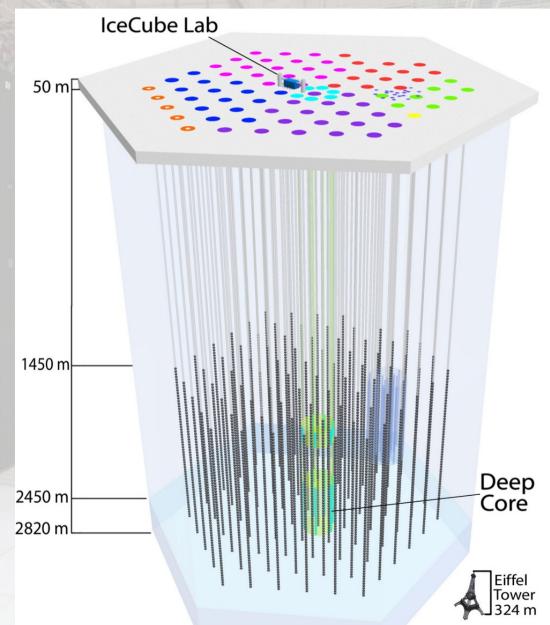

NS 🐎

LHC Experiments



LHC Experiment: ATLAS

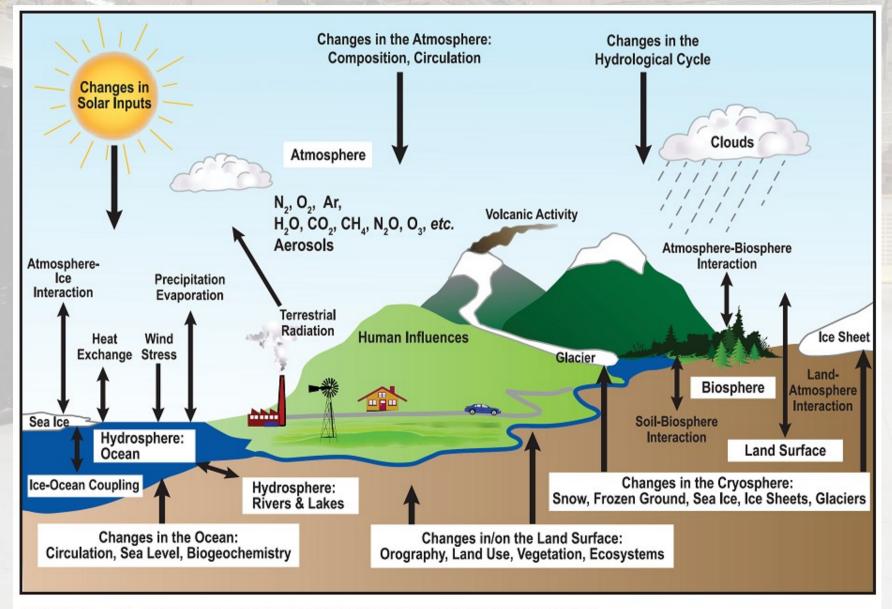
ATLAS Detector



IceCube - Neutrino observatoriet

Klas Hultqvist, Stockholms universitet

- Detektor vid sydpolen
- 86 vertikala band
- 5160 optiska moduler i 1 km³ is
- Detekterar Čerenkov strålning från sekundära partiklar neutrinos → muons
- 100 TByte data per år



Simulering av blodflöde i aortan Matts Karlsson, Linköpings universitet

Blodflöde i en mänsklig aorta. Skjuvspänningen i kärlväggarna är färgkodad.

Climate Simulation

FAQ 1.2, Figure 1. Schematic view of the components of the climate system, their processes and interactions.

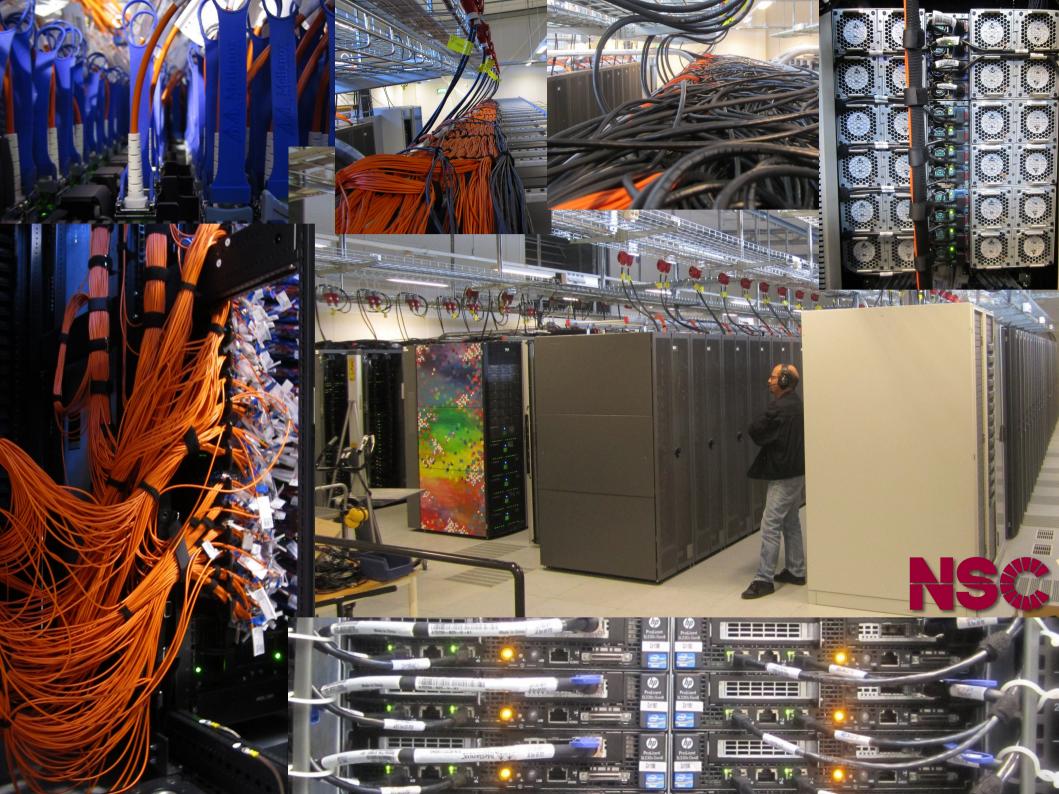
Numerical Weather Prediction

Challenges

- Stochastic process
- Chaotic nature of fluid dynamic equations
- Predict extreme weather conditions
- Increase in precision and accuracy
- Deadlines

Hurricane Katarina, 2005

Gudrun (Erwin), 2005, Byholma Timber storage


Regional NWP (SMHI & Metno)

Mo

2

SA

1212 x 1360 @ 5,5 km 1134 x 1720 @ 2,5 km 60-100 levels

