
3. HPC: Further aspects
Peter Kjellström
National Supercomputer Centre (NSC)

Software: Shared software
On Triolith, there is a large collection of pre-installed software available for users.

Q. Why is there shared software on Triolith?

● Allows many users to run popular software
● Means users do not have to install their own software
● Software can be optimized for Triolith and managed by experts
● Licensing

In summary: pre-installed software is there to make life easier for users.

More information: https://www.nsc.liu.se/software/

https://www.nsc.liu.se/software/

Software: Shared software
Q. What types of software are shared?

● Ready to use software
○ models for batch submission (e.g. VASP, Gaussian. Gromacs, ...)
○ utility programs and interpreted languages (e.g. R, python, perl, Matlab …)

● Tools to build other software
○ compilers
○ build environments
○ supporting libraries

In summary: a wide variety of software is available to use.

The parallel challenge

a = load_data(inputfiles)
for element in a:

process(element)
store_results(ouputfiles)

??!

Software: Forms of computational program

Software: Triolith installed software

https://www.nsc.liu.se/systems/triolith/software/

https://www.nsc.liu.se/systems/triolith/software/

Software: Module system, basic commands

Installed software is managed using the module system. Some basic module
commands

module --help General help with module commands
module avail List the available modules and recommendations
module add … Load the selected modules into your session
module list List your currently loaded modules (will be flushed at logout)
module rm … Remove selected modules from your session

More details: https://www.nsc.liu.se/software/modules/

https://www.nsc.liu.se/software/modules/

Software: Module system example

Software: Cautionary note

NSC tries to provide tested and optimized software, however it is never perfectly
tested and it will always be imperfect. The only thing you know about any piece of
software is that it will contain bugs...

● Job crashes
● Job produces garbage output
● Job wastes resources by running very inefficiently

Run some short test cases to confirm your configuration is sensible.

Try to understand the basic scaling properties of the application before running
any large jobs.

Software: How do I get the software I want?

1. Check module system (module avail)
2. Check the installed software webpage
3. Look in /software/apps on Triolith
4. Build and install it yourself

NSC software installation policy:

● Users are encouraged to install software in their /home or /proj folders
● NSC can help to install software on request

○ Global installation depends on wide or not usage

Triolith installed software: https://www.nsc.liu.se/systems/triolith/software/

NSC installation policy: https://www.nsc.liu.se/software/installation-policy/

https://www.nsc.liu.se/systems/triolith/software/
https://www.nsc.liu.se/software/installation-policy/

Software: Compilers and libraries
If you are compiling your own software, NSC recommends to load a build
environment for ease of use

● Compilers
○ Intel: icc, ifort, impi
○ Gcc: gcc, gfortran

● MPI libraries
○ Intel (impi), OpenMPI

● Build environments:
○ e.g. buildenv-intel/2015-1

● Math libraries:
○ e.g. MKL

Compilers: https://www.nsc.liu.se/software/compilers/
MPI libraries: https://www.nsc.liu.se/software/mpi-libraries/
Build environments: https://www.nsc.liu.se/software/buildenv/
Math libraries: https://www.nsc.liu.se/software/math-libraries/

https://www.nsc.liu.se/software/compilers/
https://www.nsc.liu.se/software/mpi-libraries/
https://www.nsc.liu.se/software/buildenv/
https://www.nsc.liu.se/software/math-libraries/

The utilization challenge
~1000 active users per year

Millions of sumitted jobs per year

Many different shapes of jobs
(single core to thousands, minutes
to days)

Special requirements

Queue system: Slurm ● Many jobs
● Many users
● Resource

access only
through Slurm

● Several methods
○ interactive
○ sbatch
○ (salloc)

● Run as much as
possible, order
based on prior
usage

Queue system: Slurm Triolith settings
● Fairshare scheduling with backfill (priority to projects with low usage)

● Reservations: --reservation=devel (rapid start for short jobs)

● Job length from minutes to 168 hours (7 days)

● Short and wide jobs, aka “flat jobs” should be avoided

● Priority boosting of jobs is available (at a cost)

More information: https://www.nsc.liu.se/support/batch-jobs/triolith/
NSC boost-tools: https://www.nsc.liu.se/support/batch-jobs/boost-tools/

https://www.nsc.liu.se/support/batch-jobs/triolith/
https://www.nsc.liu.se/support/batch-jobs/boost-tools/

Queue system: Running on the compute nodes
● Interactive (example: interactive -n 1 -t 10)

○ Direct access to nodes, hands-on
○ Good for testing
○ Troubleshooting

● Batch (example: sbatch -t 12:00:00 calculation4b.sh)
○ Indirect access to nodes
○ Login not needed
○ Only performs job script instructions
○ Output written to files
○ Production type jobs

Queue system: Submitting jobs
To submit a job to the queue, use the sbatch command:

sbatch [resource req.] jobfile

job is a ‘batch script’ which may contain:

● Slurm resource requests
● model configuration settings
● setting of environment variables
● module commands
● ...

and the actual launching of your application

More information: https://www.nsc.liu.se/support/batch-jobs/introduction/

https://www.nsc.liu.se/support/batch-jobs/introduction/

The minimum information required by the Slurm scheduler:
● How many tasks do you want: -n (number of tasks/processes)
● For how long do you want them: -t hh:mm:ss

Additional information:

● Which project should be charged for this request if a member of several
(-A PROJECTNAME)

● Jobname (-J NAME)
● Request e-mail notifications (--mail-type=TYPE, BEGIN,FAIL,TIME_LIMIT_90)

Queue system: specifying resources

More general information: https://www.nsc.liu.se/support/batch-jobs/introduction/

https://www.nsc.liu.se/support/batch-jobs/introduction/

Queue system: specifying resources
Resources can be requested either on the command line:

sbatch -n 128 -t 48:00:00 -A nsc ece-ifs.sh

or within the batch script:
#SBATCH -n 128
#SBATCH -t 48:00:00
#SBATCH -A nsc

Note:
● If the model does not complete before the walltime limit (-t 48:00:00), the scheduler will

terminate the job and valuable data may be lost.

How to start programs: Many serial programs
There are several ways to start many independent serial instances within one
jobscript.

1) Use a simple for loop. This quickly becomes complicated and requires some
bash coding experience. Tasks started are also limited to the first node (on
which your script is executed).

2) Use srun or Gnu Parallel to start tasks across many nodes

How to start programs: OpenMP
When running OpenMP programs consider submitting with a matching
specification, for example, “-n1 -c8” is one task with eight cores per task

$ export OMP_NUM_THREADS=8

$./my_openmp_program ...

How to start programs: MPI
MPI programs cannot be executed as is but require a launcher command to be
used. On NSC we provide a launcher called mpprun which integrates well
(does not require much extra work).

When submitting remember that the -n option will map to number of MPI
ranks. If you require extra memory per rank use you can use
--ntasks-per-node (set to less than 16) or -c (set to more than 1) or use
fat nodes.

$ interactive -n 64 -t 10
…
$ mpprun ./my_mpi_binary
mpprun info: Starting impi run on 4 node (64 rank X 1 th) for job ID
...

Howto start programs: Wrapper provided / special
It is not uncommon for software provided by NSC to come with specific information
on how to run it.

Sometimes it’s just a convenient template to start from and other times it
documents an application specific startup wrapper.

Examples include Comsol, NWchem, Gaussian

https://www.nsc.liu.se/systems/triolith/software/triolith-software-apps-nwchem.html

https://www.nsc.liu.se/systems/triolith/software/triolith-software-apps-nwchem.html

What’s going on with your job?
Some tools which you can use:

● squeue -u username
● jobload jobID
● lastjobs

More information: https://www.nsc.liu.se/support/batch-jobs/introduction/

https://www.nsc.liu.se/support/batch-jobs/introduction/

What’s going on with your job?
Login to the job nodes:

squeue -u username
jobsh nodename
top

More information: https://www.nsc.liu.se/support/batch-jobs/introduction/

https://www.nsc.liu.se/support/batch-jobs/introduction/

Queue system
A common question: Why doesn’t my job start?

● Requesting the use of a special resource
● Project overuse
● Blocking reservation or scheduled stop
● Incorrect job specification
● Mismatching expectations
● Note: The amount of core-h left in your project does not directly correlate with

priority. Other projects can affect where you fall on the priority list.

Parallel job: Fundamentals
● Amdahl’s law

Your parallel performance will always be
limited by that part that you cannot
parallelize
(and that part is impossible to completely
get rid of)

Parallel part Runtime

Parallel job: Fundamentals
The common solution to limited scaling due to
Amdahl’s law is what is commonly referred to
as “Weak scaling”

Weak scaling is when you increase your
problem size as you increase the amount of
resources. It works because the parallelized
part typically grows much more than the serial
part. Weak scaling is the norm.

The opposite to weak scaling is strong
scaling. Scaling your application performance
while maintaining the same problem size.

Putting it together: Starting with a new job type
Decide what software to use

1) Look for suitable software and a suitable variant and version
2) Understand what type of software this is so that a suitable job size

can be selected

Also consider how you can efficiently do pre- and post-processing for the
jobs. Additional tools/software needed?

Putting it together: Starting with a new job type
Organize input/output data

1) Learn what input and output you will need/get
2) Estimate if storage requirements will become challenging (remember both

total size and number of files can be problematic)
3) Consider what to save, what to archive and what to remove
4) Consider where to put work directories for the jobs and name things such that

it will be possible to figure out even at a later date

Note: remember that while NSC storage very seldom loses user files it’s not
perfect and only /home is backup protected.

Putting it together: Starting with a new job type
Test run the software and:

● Verify the output. Does it produce reasonable results?
● Verify that the job launches correctly and seems to run ok (jobsh, jobload, …)

You should also perform a simple scaling analysis to make sure that you’re using the
projects resources efficiently.

Simple scaling analysis
A minimal scaling analysis can save vast amounts
of allocated core hours.

1. Tool your runscript to time your simulation
2. Run an initial best guess number of cores (n)
3. Run the same test on half the number of cores (n/2)
4. Score = performance / performance on half the

number of cores

Dragons ate my lunch 1.0 2.0 Super-linear scaling...

Good part
>1.5

Best practices & suggestions

General reminders

● Be careful in how you use the Triolith login nodes

● Use SUPR to follow project usage

● Use the NSC documentation

● Don’t be afraid to ask for help (support@nsc.liu.se) if you need help or have

questions

Login node usage:https://www.nsc.liu.se/support/running-applications/
SUPR: https://supr.snic.se/

mailto:support@nsc.liu.se
https://www.nsc.liu.se/support/running-applications/
https://supr.snic.se/

Best practices & suggestions

Data/files/storage

● Use shared folders or files in /proj for collaborative work
● Use separate working directories for your submitted jobs
● Use sensible names for working directories and files
● Try at least some basic data management:

○ Remove redundant data
○ Compress your data where appropriate
○ Keep down number of files (e.g. use tar)
○ Keep track of how much space you use (snicquota)

More information: https://www.nsc.liu.se/support/storage/snic-centrestorage/

https://www.nsc.liu.se/support/storage/snic-centrestorage/

Best practices & suggestions

Batch jobs

● Use sensible jobnames
● Save output data (logs) from jobs
● Keep Job IDs - helpful for diagnosing problems
● Try to understand the scaling characteristics of your software before running

large jobs

More information: https://www.nsc.liu.se/support/batch-jobs/introduction/ https://www.nsc.liu.se/support/batch-jobs/triolith/

https://www.nsc.liu.se/support/batch-jobs/introduction/
https://www.nsc.liu.se/support/batch-jobs/triolith/

Best practices & suggestions

Common problems

● My job didn’t run as I expected (or crashed). What do I do now?

○ First, try to understand what the problem might be

○ Write a good support question

● Don’t run heavy things / production work on the login node

○ For brief testing e.g. run interactively --reservation=devel

Writing good support questions: https://www.nsc.liu.se/support/getting-help/

include more details

