
Running MATLAB @NSC
ANDERS SJÖSTRÖM

Introduction

Why use MATLAB for HPC?

• Familiar environment

• Portability

• Rapid prototyping

• License conservation

• Computational speed

• Lots of available packages and code

MDCS introduction

• MATLAB Distributed Computing Server (MDCS) is built over the
message parsing interface (MPI) to allow scaling of Parallel
Computing Toolbox (PCT) enabled codes

• Workers need only the MDCS worker license (provided by SNIC)
• Workers inherit all toolbox licenses from the submitting process
• Regular MATLAB license + PCT license is only needed during job

submission
• PCT constructs scale seamlessly. I.e. same code can be used

locally and on the cluster
• Code can be prototyped on local machine and then used on a HPC

cluster to scale in computational power and memory footprint

MATLAB@NSC

• Available using ThinLinc and through terminal

• Integrated with the queueing system

• Distributes work on workers in a parallel-pool

• Up to 700 workers

• Larger memory and more cores

• Arrays can be distributed over all workers

• Can run applications Interactively or as Batch jobs

Desktop or Console?

• For full MATLAB interface ThinLinc is recommended

• If only the ability to send in scripts is needed, the console
can suffice

• The ThinLinc client is for most users preferable (available
at www.cendio.com/thinlinc/download)

Setting up

Desktop

Desktop

Older Installations used:
configCluster
ClusterInfo.setProjectName(‘name-of-proj’)
ClusterInfo.setWallTime(’00:10:00’)

Desktop

Desktop

Older Installations used:

setArch
setClusterHost
setDataParallelism
setDebugMessagesTurnedOn
setDiskSpace
setEmailAddress
setGpusPerNode
setMemUsage
setNameSpace
setPrivateKeyFile
setPrivateKeyFileHasPassPhrase
setProcsPerNode
setProjectName
setQueueName
setRequireExclusiveNode
setReservation
setSshPort
setUseGpu
setUserDefinedOptions
setUserNameOnCluster
setWallTime

Basic concepts

Workflows

• Local

All workers are running on the local host

Local host

Workflows
• Interactive

All workers are running on a remote host, controlled by
the user process more or less directly

NodeLocal host

Workflows
• Batch

Jobs are dispatched to workers on one or more nodes, each with its o
wn job id in SLURM. Note that each job has its own master worker

Local host

Node

Node

Node Node

How do I start a parallel pool?

• parpool(n)

• j = batch('script1','Pool',8)

- starts a parallel pool of n workers

- starts a pool of 8 workers and runs the script
script1 on those workers

How do I share code with workers?

• Workers Access Files Directly

• Pass Data to and from Worker Sessions

• Pass MATLAB Code for Startup and Finish

Workers Access Files Directly
• The workers all have access to the same drives on the

network, they can access the necessary files that reside on
these shared resources.

• Using the job's AdditionalPaths property
• Putting the path command in any of the appropriate startup

files for the worker

matlabroot\toolbox\local\startup.m
matlabroot\toolbox\distcomp\user\jobStartup.m
matlabroot\toolbox\distcomp\user\taskStartup.m

'AdditionalPaths'
— A string or cell
array of strings
that defines paths
to be added to the
MATLAB search path
of the workers
before the script
or function
executes.

Pass Data to and from Worker
Sessions

• InputArguments — Contains the input data you specified when creating the task. This data gets
passed into the function when the worker performs its evaluation.

• OutputArguments — Property of each task contains the results of the function's evaluation.

• JobData — Property of the job object. Contains data that gets sent to every worker that
evaluates tasks for that job. The data is passed to a worker only once per job.

• AttachedFiles — Property of the job object. A cell array in which you manually specify all the
folders and files that get sent to the workers. On the worker, the files are installed and the entries
specified in the property are added to the search path of the worker session.

• AutoAttachFiles — Property of the job object. A logical value to specify that you want
MATLAB to perform an analysis on the task functions in the job and on manually attached files
to determine which code files are necessary for the workers, and to automatically send those
files to the workers.

 
The supported code file formats for automatic
attachment are MATLAB files (.m extension), P-code
files (.p), and MEX-files (.mex). Note that
AutoAttachFiles does not include data files for
your job; use the AttachedFiles property to
explicitly transfer these files to the workers.  

Pass MATLAB Code for Startup
and Finish

• As in a session of MATLAB, a worker session
executes its startup.m file each time it starts. You can
place the startup.m file in any folder on the worker's
MATLAB search path, such as toolbox/distcomp/user.

• These additional files can initialize and clean up a
worker session as it begins or completes evaluations
of tasks for a job:

Pass MATLAB Code for Startup
and Finish

• jobStartup.m automatically executes on a worker when the
worker runs its first task of a job.

• taskStartup.m automatically executes on a worker each
time the worker begins evaluation of a task.

• poolStartup.m automatically executes on a worker each
time the worker is included in a newly started parallel pool.

• taskFinish.m automatically executes on a worker each time
the worker completes evaluation of a task.

Empty versions of these files are provided in the folder:
matlabroot/toolbox/distcomp/user
You can edit these files to include whatever MATLAB code you want the worker to execute
at the indicated times.
Alternatively, you can create your own versions of these files and pass them to the job
as part of the AttachedFiles property, or include the path names to their locations in
the AdditionalPaths property.
The worker gives precedence to the versions provided in the AttachedFiles property, then
to those pointed to in the AdditionalPaths property. If any of these files is not
included in these properties, the worker uses the version of the file in the
toolbox/distcomp/user folder of the worker's MATLAB installation.

Slow code? Out of memory?

• Know your enemy:

– Understand the constraints

– Identify bottlenecks

• Exploit data and task parallelism

• Find the best tradeoff between programming effort
and achieving your goals

MATLAB@NSC
• Test your code locally on a small problem first

• Use MATLAB profiler to optimize code and spot parallelizable regions

• Avoid running interactively to the backend, use Batch instead

• Use MATLAB on the desktop as a launcher through the Batch-command

Speeding up MATLAB Flow-chart

Yes

Yes

Yes

Do you want
to use a

bigger/faster
machine?

Yes

Do you want
to offload to

the
background?

Do you want one
instance of your
program to run

faster?

Have you
profiled it? No

Can the code
be vectorized?

No

Yes

Do you have lots of
intense independent

work to run?

Yes

Do you have a cluster and
a data-parallel problem too

large for the RAM of a
single machine?

Do you want to be able to
plot intermediate results?

Do you have a problem
that can be parallelized

using message passing?

Do you want to be able to
break out of a loop early?

Yes

Yes

Yes

Yes

Do you still need to speed
up one instance of your
application, and do you

have a GPU and code that
might run there?

Do you want
to offload to

the
background?

Use a cluster
profile

Improve it

Use
parfor

Use
parfeval

Use distributed
arrays

Use spmd

Use gpuArray

Use batch

Parallelizing code

Interactively Run a Loop in
Parallel

*

Create a sine waveform and plot it

Parallel version

Serial version

for i = 1:1024
A(i) = sin(i*2*pi/1024);

end
plot(A)

parfor i = 1:1024
A(i) = sin(i*2*pi/1024);

end
plot(A)

Must be
consecutive

for - parfor

parfor loopvar = initval:endval
<statements>

END

for loopvar = initval:endval
<statements>

END

Do not need to be
consecutive

Parfor variables
• Loop Variable: Loop index
• Sliced Variables: Arrays whose segments are operated on by different

iterations of the loop
• Broadcast Variables: Variables defined before the loop whose value is

required inside the loop, but never assigned inside the loop
• Reduction Variables: Variables that accumulate a value across iterations of

the loop, regardless of iteration order
• Temporary Variables: Variables created inside the loop, and not accessed

outside the loop

What if my loop is nested?
• The body of a parfor-loop cannot contain another parfor-loop.
• A parfor-loop can call a function that contains another parfor-loop.
• A worker cannot open a parallel pool. Thus, a worker cannot run an inner

nested parfor-loop in parallel.
• Only one level of nested parfor-loops can run in parallel.
• If the outer loop runs in parallel on a parallel pool, the inner loop runs serially

on each worker.
• If the outer loop runs serially in the client, the function that contains the inner

loop can run the inner loop in parallel on workers in a pool.
• The body of a parfor-loop can contain for-loops.
• You can use the inner loop variable for indexing the sliced array, but only in

plain form, not part of an expression.

A = zeros(4,5);
parfor j = 1:4

for k = 1:5
A(j,k) = j + k;

end
end
A

What if my loop is nested?

M1 = magic(10000);

M2=zeros(size(M1));

tic;

[j,k]=size(M1);

for x = 1:j

for y = 1:k

M2(x,y) = x*10 + y + M1(x,y)/10000;

end

end

t(1)=toc;

for x = 1:j
parfor y = 1:k

M2(x,y) = x*10 + y + M1(x,y)/10000;
end

end
t(3)=toc; 3.6440 sec

0.3993 sec

parfor x = 1:j
for y = 1:k

M2(x,y) = x*10 + y + M1(x,y)/10000;
end

end
t(2)=toc;

What if my loop is nested?

A = zeros(100, 200);
parfor i = 1:size(A, 1)

for j = 1:size(A, 2)
A(i, j) = plus(i, j);

end
end

Invalid
A = zeros(100, 200);
n = size(A, 2);
parfor i = 1:size(A,1)

for j = 1:n
A(i, j) = plus(i, j);

end
end

Valid

For proper variable classification, the range of a for-loop nested in a parfor must be defined by
constant numbers or variables. In the example, the code on the left does not work because the
for-loop upper limit is defined by a function call. The code on the right works around this by
defining a broadcast or constant variable outside the parfor first.

What if my loop is nested?

The index variable for the nested for-loop must never be explicitly
assigned other than in its for-statement. When using the nested for-loop
variable for indexing the sliced array, you must use the variable in plain
form, not as part of an expression. In the example, the code on the left
does not work, but the code on the right does:

Invalid

A = zeros(4, 11);
parfor i = 1:4

for j = 1:10
A(i, j + 1) = i + j;

end
end

Valid

A = zeros(4, 11);
parfor i = 1:4

for j = 2:11
A(i, j) = i + j - 1;

end
end

Invalid Valid

If you use a nested for-loop to index into a sliced array,
you cannot use that array elsewhere in the parfor-loop. In
the example, the code on the left does not work because A
is sliced and indexed inside the nested for-loop; the code
on the right works because v is assigned to A outside the
nested loop:

A = zeros(4, 10);
parfor i = 1:4

for j = 1:10
A(i, j) = i + j;

end
disp(A(i, 1))

end

A = zeros(4, 10);
parfor i = 1:4

v = zeros(1, 10);
for j = 1:10

v(j) = i + j;
end
disp(v(1))
A(i, :) = v;

end

What if my loop is nested?

What if my loop is nested?

Inside a parfor, if you use multiple for-loops (not nested inside each
other) to index into a single sliced array, they must loop over the same
range of values. Furthermore, a sliced output variable can be used in
only one nested for-loop. In the example, the code on the left does not
work because j and k loop over different values; the code on the right
works to index different portions of the sliced array A:

Invalid

A = zeros(4, 10);
parfor i = 1:4

for j = 1:5
A(i, j) = i + j;

end
for k = 6:10

A(i, k) = pi;
end

end

Valid
A = zeros(4, 10);
parfor i = 1:4

for j = 1:10
if j < 6

A(i, j) = i + j;
else

A(i, j) = pi;
end

end
end

Example: parameter sweep
• Offload parameter sweep to local workers

• Get peak value results when processing is
complete

• Plot results in local MATLAB

Parameter sweep speedup

feval - parfeval

fun = 'round';
x1 = pi;
y = feval(fun,x1)

x2 = 2;
y = feval(fun,x1,x2)

>>y=3.1400

feval – evaluate function

>>y=3

parfeval - Execute function
asynchronously on parallel pool worker

f = parfeval(p,@magic,1,10);
value = fetchOutputs(f);

Parfeval example
n = 10000000;
job = cell(1,6);
for idx = 1:6

jobs(idx) = parfeval(pool, @test, 1, n, idx);
end

% wait for outputs as they finish
output = cell(1, 6);
for idx = 1:6

[completedIdx, value] = fetchNext(jobs);
output{completedIdx} = value;

end
delete(pool);

SPMD and Distributed Arrays

SPMD

Overview

• spmd (Single Program Multiple Data)

• labindex and numlabs

• Exchanging data between workers explicitly

• Data transfer to the client using composite arrays

parpool

• Similar to parfor, spmd requires a parpool in order
for code to run on workers

• If a parpool doesn’t exist, one will start if that is the
default behavior

spmd

• Code inside spmd blocks run on all workers

• Unlike parfor, variables maintain state between calls to spmd
as well as in parfor

• Can be used for loading data to be used in parfor loops

labindex and numlabs

• Helps control what is executed on a worker
• Inside a spmd block

– labindex returns the rank of the worker

– numlabs returns the total number of workers in the pool

Create a Variant Array on Each of the
Workers

>> magic_squares

>> approx_pi

Composite Arrays

• Composite: client-side data-type for viewing data on the workers
• Outside of spmd, index with () or {} to get the data of one of

the workers to the client

Types of Composite Arrays (non-
distributed arrays)

• Replicated

• Variant

• Private

Limitations

• The body of an spmd statement must be transparent

X

Distributed Arrays

Overview

• Distributed Arrays

• Constructing Distributed Arrays

• distributed and codistributed

• Working with Distributed Arrays

parpool

• Similar to spmd, distributed arrays require a parpool
in order for code to run on workers

• If a parpool doesn’t exist, one will start if that is the
default behavior

Distributed Arrays

• One variable, split over multiple workers

• However, the MATLAB client sees the variable as one

• Mainly of interest with a cluster, combining the memory of
multiple machines

• If the function has been overloaded for distributed arrays, there
should be minimal changes to the code

Creating Distributed Arrays (1)

• Matrix creation functions have been overloaded for distributed
arrays

– zeros(...,’distributed’);

– randn(...,’distributed’);

• If a variable has the same value on all of the workers, use
distributed directly

Creating Distributed Arrays (2)

• Use case: creating a large matrix from multiple files or one large file
would not fit into the memory of one computer

• Create data on each worker

• Combined into a distributed array using codistributed.build
and codistributed1d

• Specify the size of the distributed array and optionally the
partitioning

Working with Distributed Arrays
• A collection of MATLAB functions are overloaded for distributed arrays

• Overloaded functions can be called similar to other data types (e.g. numeric)

• Call gather to convert back to a numeric array

Using Distributed Arrays on Workers

>> distrib_example

distributed and codistributed

• The same distributed array will have a data type of:
– distributed: on the client

– codistributed: on the workers (within a spmd block)

Using Codistributed Arrays on
Workers

>> codistrib_example

GPU-computing

What is needed?
• Matlab
• PCT
• GPU

Suitable problems

• Massively parallel tasks
• Computationally intensive tasks
• Tasks that have limited kernel size

Options
• Built-in functions
• Functions on array data
• Directly invoke CUDA-code

Control vs Effort

Extensive

Some

Minimal

Level of control Required effort

Built-in functions

Directly invoke
CUDA code

Functions on array data

Built-in functions
• Accelerate standard (highly parallel) functions

– More than 200 MATLAB functions are already
supported

• Out of the box:
– No additional effort for programming the GPU

• No accuracy for speed trade-off
– Double floating-point precision computations

Random number generation
FFT
Matrix multiplications
Solvers
Convolutions

Min/max
SVD
Cholesky and LU factorization

Example
maxIterations = 500;

gridSize=1000;

xlim = [-0.748766713922161, -0.748766707771757];

ylim = [0.123640844894862, 0.123640851045266];

t = tic();

x = linspace(xlim(1), xlim(2), gridSize);

y = linspace(ylim(1), ylim(2), gridSize);

[xGrid,yGrid] = meshgrid(x, y);

z0 = xGrid + 1i*yGrid;

count = ones(size(z0));

% Calculate

z = z0;

for n = 0:maxIterations

z = z.*z + z0;

inside = abs(z)<=2;

count = count + inside;

end

% show

count = log(count);

CPU serial

Example cont’d
t = tic();

x = gpuArray.linspace(xlim(1), xlim(2), gridSize);

y = gpuArray.linspace(ylim(1), ylim(2), gridSize);

[xGrid,yGrid] = meshgrid(x, y);

z0 = complex(xGrid, yGrid);

count = ones(size(z0), 'gpuArray');

% Calculate

z = z0;

for n = 0:maxIterations

z = z.*z + z0;

inside = abs(z)<=2;

count = count + inside;

end

count = log(count);

% Show

count = gather(count); % Fetch the data back from the GPU

naiveGPUTime = toc(t);

Built-in functions

Example cont’d
t = tic();

x = gpuArray.linspace(xlim(1), xlim(2), gridSize);

y = gpuArray.linspace(ylim(1), ylim(2), gridSize);

[xGrid,yGrid] = meshgrid(x, y);

% Calculate

count = arrayfun(@pctdemo_processMandelbrotElement, ...

xGrid, yGrid, maxIterations);

% Show

count = gather(count); % Fetch the data back from the GPU

gpuArrayfunTime = toc(t);

function count = pctdemo_processMandelbrotElement(x0,y0,maxIterations)
z0 = complex(x0,y0);
z = z0;
count = 1;
while (count <= maxIterations) && (abs(z) <= 2)

count = count + 1;
z = z*z + z0;

end
count = log(count);

Functions on array data

//
// Generated by NVIDIA NVVM Compiler
//
// Compiler Build ID: CL-19856038
// Cuda compilation tools, release 7.5, V7.5.17
// Based on LLVM 3.4svn
//

.version 4.3

.target sm_20

.address_size 64

// .globl _Z12doIterationsddj

.visible .func (.param .b32 func_retval0) _Z12doIterationsddj(
.param .b64 _Z12doIterationsddj_param_0,
.param .b64 _Z12doIterationsddj_param_1,
.param .b32 _Z12doIterationsddj_param_2

)
{

.reg .pred %p<3>;

.reg .b32 %r<7>;

.reg .f64 %fd<14>;

ld.param.f64 %fd7, [_Z12doIterationsddj_param_0];
ld.param.f64 %fd8, [_Z12doIterationsddj_param_1];
ld.param.u32 %r4, [_Z12doIterationsddj_param_2];
mov.u32 %r6, 0;
mov.f64 %fd12, %fd8;
mov.f64 %fd13, %fd7;

BB0_1:
mov.f64 %fd2, %fd13;
mov.f64 %fd1, %fd12;
mul.f64 %fd3, %fd1, %fd1;
mul.f64 %fd4, %fd2, %fd2;
add.f64 %fd9, %fd4, %fd3;
setp.gtu.f64 %p1, %fd9, 0d4010000000000000;
@%p1 bra BB0_3;

add.s32 %r6, %r6, 1;
sub.f64 %fd10, %fd4, %fd3;
add.f64 %fd5, %fd10, %fd7;
add.f64 %fd11, %fd2, %fd2;
fma.rn.f64 %fd6, %fd11, %fd1, %fd8;
setp.le.u32 %p2, %r6, %r4;
mov.f64 %fd12, %fd6;
mov.f64 %fd13, %fd5;
@%p2 bra BB0_1;

BB0_3:
st.param.b32 [func_retval0+0], %r6;
ret;

}

Example cont’d
% Load the kernel

cudaFilename = 'pctdemo_processMandelbrotElement.cu';

ptxFilename = ['pctdemo_processMandelbrotElement.',parallel.gpu.ptxext];

kernel = parallel.gpu.CUDAKernel(ptxFilename, cudaFilename);

% Setup

t = tic();

x = gpuArray.linspace(xlim(1), xlim(2), gridSize);

y = gpuArray.linspace(ylim(1), ylim(2), gridSize);

[xGrid,yGrid] = meshgrid(x, y);

% Make sure we have sufficient blocks to cover all of the locations

numElements = numel(xGrid);

kernel.ThreadBlockSize = [kernel.MaxThreadsPerBlock,1,1];

kernel.GridSize = [ceil(numElements/kernel.MaxThreadsPerBlock),1];

% Call the kernel

count = zeros(size(xGrid), 'gpuArray');

count = feval(kernel, count, xGrid, yGrid, maxIterations, numElements);

% Show

__device__
unsigned int doIterations(double const realPart0,

double const imagPart0,
unsigned int const maxIters) {

// Initialize: z = z0
double realPart = realPart0;
double imagPart = imagPart0;
unsigned int count = 0;
// Loop until escape
while ((count <= maxIters)

&& ((realPart*realPart + imagPart*imagPart) <= 4.0)) {
++count;
// Update: z = z*z + z0;
double const oldRealPart = realPart;
realPart = realPart*realPart - imagPart*imagPart + realPart0;
imagPart = 2.0*oldRealPart*imagPart + imagPart0;

}
return count;

}

Nvcc –ptx code.cu

Example cont’d
ans: 'finished’

count: [1000x1000 double]

cpuTime: 15.9700

gpuArrayfunTime: 0.7010

gridSize: 1000

inside: [1x1 gpuArray]

maxIterations: 500

n: 500

naiveGPUTime: 5.5109

t: 1443545040634310

x: [1x1 gpuArray]

xGrid: [1x1 gpuArray]

xlim: [-0.7488 -0.7488]

y: [1x1 gpuArray]

yGrid: [1x1 gpuArray]

ylim: [0.1236 0.1236]

z: [1x1 gpuArray]

z0: [1x1 gpuArray]
Laptop 6.24s

//
// Generated by NVIDIA NVVM Compiler
//
// Compiler Build ID: CL-19856038
// Cuda compilation tools, release 7.5, V7.5.17
// Based on LLVM 3.4svn
//

.version 4.3

.target sm_20

.address_size 64

// .globl _Z4add1Pdd

.visible .entry _Z4add1Pdd(
.param .u64 _Z4add1Pdd_param_0,
.param .f64 _Z4add1Pdd_param_1

)
{

.reg .f64 %fd<4>;

.reg .b64 %rd<3>;

ld.param.u64 %rd1, [_Z4add1Pdd_param_0];
ld.param.f64 %fd1, [_Z4add1Pdd_param_1];
cvta.to.global.u64 %rd2, %rd1;
ldu.global.f64 %fd2, [%rd2];
add.f64 %fd3, %fd2, %fd1;
st.global.f64 [%rd2], %fd3;
ret;

}

Simple example
k = parallel.gpu.CUDAKerne('test.ptx','test.cu');

result = feval(k,2,3)

Matlab

__global__ void add1(double * pi, double c)
{

*pi += c;
}

Kernel (test.cu)

Multiple GPUs
parpool(2)

spmd

gd=gpuDevice;

idx=gd.Index;

disp(['Using GPU ',num2str(idx)]);

end

parfor ix = 1:10

gd=gpuDevice;

d(ix)=gd.Index;

end

Lab 1:
Using GPU 1

Lab 2:
Using GPU 2

>> d

d =

2 2 2 2
1 1 1 2 2
1

