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Introduction



Why use MATLAB for HPC?

• Familiar environment

• Portability

• Rapid prototyping

• License conservation

• Computational speed

• Lots of available packages and code



MDCS introduction

• MATLAB Distributed Computing Server (MDCS) is built over the 
message parsing interface (MPI) to allow scaling of Parallel 
Computing Toolbox (PCT) enabled codes

• Workers need only the MDCS worker license (provided by SNIC)
• Workers inherit all toolbox licenses from the submitting process
• Regular MATLAB license + PCT license is only needed during job 

submission
• PCT constructs scale seamlessly. I.e. same code can be used 

locally and on the cluster
• Code can be prototyped on local machine and then used on a HPC 

cluster to scale in computational power and memory footprint



MATLAB@NSC

• Available using ThinLinc and through terminal

• Integrated with the queueing system

• Distributes work on workers in a parallel-pool

• Up to 700 workers

• Larger memory and more cores

• Arrays can be distributed over all workers

• Can run applications Interactively or as Batch jobs



Desktop or Console?

• For full MATLAB interface ThinLinc is recommended

• If only the ability to send in scripts is needed, the console 
can suffice

• The ThinLinc client is for most users preferable  (available 
at www.cendio.com/thinlinc/download)



Setting up



Desktop



Desktop

Older Installations used:
configCluster
ClusterInfo.setProjectName(‘name-of-proj’)
ClusterInfo.setWallTime(’00:10:00’)



Desktop



Desktop

Older Installations used:

setArch
setClusterHost
setDataParallelism
setDebugMessagesTurnedOn
setDiskSpace
setEmailAddress
setGpusPerNode
setMemUsage
setNameSpace
setPrivateKeyFile
setPrivateKeyFileHasPassPhrase
setProcsPerNode
setProjectName
setQueueName
setRequireExclusiveNode
setReservation
setSshPort
setUseGpu
setUserDefinedOptions
setUserNameOnCluster
setWallTime



Basic concepts



Workflows

• Local

All workers are running on the local host

Local host



Workflows
• Interactive

All workers are running on a remote host, controlled by
the user process more or less directly

NodeLocal host



Workflows
• Batch

Jobs are dispatched to workers on one or more nodes, each with its o
wn job id in SLURM. Note that each job has its own master worker

Local host

Node

Node

Node Node



How do I start a parallel pool?

• parpool(n)

• j = batch('script1','Pool',8)

- starts a parallel pool of n workers

- starts a pool of 8 workers and runs the script 
script1 on those workers 



How do I share code with workers?

• Workers Access Files Directly

• Pass Data to and from Worker Sessions

• Pass MATLAB Code for Startup and Finish



Workers Access Files Directly
• The workers all have access to the same drives on the 

network, they can access the necessary files that reside on 
these shared resources.

• Using the job's AdditionalPaths property
• Putting the path command in any of the appropriate startup

files for the worker

matlabroot\toolbox\local\startup.m
matlabroot\toolbox\distcomp\user\jobStartup.m
matlabroot\toolbox\distcomp\user\taskStartup.m

'AdditionalPaths' 
— A string or cell 
array of strings 
that defines paths 
to be added to the 
MATLAB search path 
of the workers 
before the script 
or function 
executes. 



Pass Data to and from Worker 
Sessions

• InputArguments — Contains the input data you specified when creating the task. This data gets 
passed into the function when the worker performs its evaluation.

• OutputArguments — Property of each task contains the results of the function's evaluation.

• JobData — Property of the job object. Contains data that gets sent to every worker that 
evaluates tasks for that job. The data is passed to a worker only once per job.

• AttachedFiles — Property of the job object. A cell array in which you manually specify all the 
folders and files that get sent to the workers. On the worker, the files are installed and the entries 
specified in the property are added to the search path of the worker session.

• AutoAttachFiles — Property of the job object. A logical value to specify that you want 
MATLAB to perform an analysis on the task functions in the job and on manually attached files 
to determine which code files are necessary for the workers, and to automatically send those 
files to the workers. 

 
The supported code file formats for automatic 
attachment are MATLAB files (.m extension), P-code 
files (.p), and MEX-files (.mex). Note that 
AutoAttachFiles does not include data files for 
your job; use the AttachedFiles property to 
explicitly transfer these files to the workers.  



Pass MATLAB Code for Startup
and Finish

• As in a session of MATLAB, a worker session 
executes its startup.m file each time it starts. You can 
place the startup.m file in any folder on the worker's 
MATLAB search path, such as toolbox/distcomp/user.

• These additional files can initialize and clean up a 
worker session as it begins or completes evaluations 
of tasks for a job:



Pass MATLAB Code for Startup
and Finish

• jobStartup.m automatically executes on a worker when the 
worker runs its first task of a job.

• taskStartup.m automatically executes on a worker each 
time the worker begins evaluation of a task.

• poolStartup.m automatically executes on a worker each 
time the worker is included in a newly started parallel pool.

• taskFinish.m automatically executes on a worker each time 
the worker completes evaluation of a task.

Empty versions of these files are provided in the folder:
matlabroot/toolbox/distcomp/user
You can edit these files to include whatever MATLAB code you want the worker to execute 
at the indicated times.
Alternatively, you can create your own versions of these files and pass them to the job 
as part of the AttachedFiles property, or include the path names to their locations in 
the AdditionalPaths property.
The worker gives precedence to the versions provided in the AttachedFiles property, then 
to those pointed to in the AdditionalPaths property. If any of these files is not 
included in these properties, the worker uses the version of the file in the 
toolbox/distcomp/user folder of the worker's MATLAB installation.



Slow code? Out of memory?

• Know your enemy:

– Understand the constraints

– Identify bottlenecks

• Exploit data and task parallelism

• Find the best tradeoff between programming effort
and achieving your goals



MATLAB@NSC
• Test your code locally on a small problem first

• Use MATLAB profiler to optimize code and spot parallelizable regions

• Avoid running interactively to the backend, use Batch instead

• Use MATLAB on the desktop as a launcher through the Batch-command 



Speeding up MATLAB Flow-chart 



Yes

Yes

Yes

Do you want 
to use a 

bigger/faster 
machine?

Yes

Do you want 
to offload to 

the 
background?

Do you want one 
instance of your 
program to run 

faster?

Have you 
profiled it? No

Can the code 
be vectorized?

No

Yes

Do you have lots of 
intense independent 

work to run?

Yes

Do you have a cluster and 
a data-parallel problem too 

large for the RAM of a 
single machine?

Do you want to be able to 
plot intermediate results?

Do you have a problem 
that can be parallelized 

using message passing?

Do you want to be able to 
break out of a loop early?

Yes

Yes

Yes

Yes

Do you still need to speed 
up one instance of your 
application, and do you 

have a GPU and code that 
might run there?

Do you want 
to offload to 

the 
background?

Use a cluster 
profile

Improve it

Use 
parfor

Use 
parfeval

Use distributed 
arrays

Use spmd

Use gpuArray

Use batch



Parallelizing code



Interactively Run a Loop in 
Parallel

*

Create a sine waveform and plot it

Parallel version

Serial version

for i = 1:1024
A(i) = sin(i*2*pi/1024);

end
plot(A)

parfor i = 1:1024
A(i) = sin(i*2*pi/1024);

end
plot(A)



Must be 
consecutive

for - parfor

parfor loopvar = initval:endval
<statements>

END 

for loopvar = initval:endval
<statements>

END

Do not need to be 
consecutive



Parfor variables
• Loop Variable: Loop index
• Sliced Variables: Arrays whose segments are operated on by different 

iterations of the loop
• Broadcast Variables: Variables defined before the loop whose value is 

required inside the loop, but never assigned inside the loop
• Reduction Variables: Variables that accumulate a value across iterations of 

the loop, regardless of iteration order
• Temporary Variables: Variables created inside the loop, and not accessed 

outside the loop



What if my loop is nested?
• The body of a parfor-loop cannot contain another parfor-loop. 
• A parfor-loop can call a function that contains another parfor-loop.
• A worker cannot open a parallel pool. Thus, a worker cannot run an inner 

nested parfor-loop in parallel. 
• Only one level of nested parfor-loops can run in parallel. 
• If the outer loop runs in parallel on a parallel pool, the inner loop runs serially 

on each worker. 
• If the outer loop runs serially in the client, the function that contains the inner 

loop can run the inner loop in parallel on workers in a pool.
• The body of a parfor-loop can contain for-loops. 
• You can use the inner loop variable for indexing the sliced array, but only in 

plain form, not part of an expression.

A = zeros(4,5);
parfor j = 1:4

for k = 1:5
A(j,k) = j + k;

end
end
A



What if my loop is nested?

M1 = magic(10000);

M2=zeros(size(M1));

tic;

[j,k]=size(M1);

for x = 1:j

for y = 1:k

M2(x,y) = x*10 + y +   M1(x,y)/10000;

end

end

t(1)=toc;

for x = 1:j
parfor y = 1:k

M2(x,y) = x*10 + y + M1(x,y)/10000;
end

end
t(3)=toc; 3.6440 sec

0.3993 sec

parfor x = 1:j
for y = 1:k

M2(x,y) = x*10 + y + M1(x,y)/10000;
end

end
t(2)=toc;



What if my loop is nested?

A = zeros(100, 200);
parfor i = 1:size(A, 1)

for j = 1:size(A, 2)
A(i, j) = plus(i, j);

end
end

Invalid
A = zeros(100, 200);
n = size(A, 2);
parfor i = 1:size(A,1)

for j = 1:n
A(i, j) = plus(i, j);

end
end

Valid

For proper variable classification, the range of a for-loop nested in a parfor must be defined by 
constant numbers or variables. In the example, the code on the left does not work because the 
for-loop upper limit is defined by a function call. The code on the right works around this by 
defining a broadcast or constant variable outside the parfor first.



What if my loop is nested?

The index variable for the nested for-loop must never be explicitly 
assigned other than in its for-statement. When using the nested for-loop 
variable for indexing the sliced array, you must use the variable in plain 
form, not as part of an expression. In the example, the code on the left 
does not work, but the code on the right does:

Invalid

A = zeros(4, 11);
parfor i = 1:4

for j = 1:10
A(i, j + 1) = i + j;

end
end

Valid

A = zeros(4, 11);
parfor i = 1:4

for j = 2:11
A(i, j) = i + j - 1;

end
end



Invalid Valid

If you use a nested for-loop to index into a sliced array, 
you cannot use that array elsewhere in the parfor-loop. In 
the example, the code on the left does not work because A 
is sliced and indexed inside the nested for-loop; the code 
on the right works because v is assigned to A outside the 
nested loop:

A = zeros(4, 10);
parfor i = 1:4

for j = 1:10
A(i, j) = i + j;

end
disp(A(i, 1))

end

A = zeros(4, 10);
parfor i = 1:4

v = zeros(1, 10);
for j = 1:10

v(j) = i + j;
end
disp(v(1))
A(i, :) = v;

end

What if my loop is nested?



What if my loop is nested?

Inside a parfor, if you use multiple for-loops (not nested inside each 
other) to index into a single sliced array, they must loop over the same 
range of values. Furthermore, a sliced output variable can be used in 
only one nested for-loop. In the example, the code on the left does not 
work because j and k loop over different values; the code on the right 
works to index different portions of the sliced array A:

Invalid

A = zeros(4, 10);
parfor i = 1:4

for j = 1:5
A(i, j) = i + j;

end
for k = 6:10

A(i, k) = pi;
end

end

Valid
A = zeros(4, 10);
parfor i = 1:4

for j = 1:10
if j < 6

A(i, j) = i + j;
else

A(i, j) = pi;
end

end
end



Example: parameter sweep
• Offload parameter sweep to local workers

• Get peak value results when processing is 
complete

• Plot results in local MATLAB 



Parameter sweep speedup



feval - parfeval

fun = 'round';
x1 = pi;
y = feval(fun,x1)

x2 = 2;
y = feval(fun,x1,x2)

>>y=3.1400

feval – evaluate function

>>y=3

parfeval - Execute function 
asynchronously on parallel pool worker

f = parfeval(p,@magic,1,10);
value = fetchOutputs(f);



Parfeval example
n = 10000000;
job = cell(1,6);
for idx = 1:6 

jobs(idx) = parfeval(pool, @test, 1, n, idx);
end 

% wait for outputs as they finish 
output = cell(1, 6);
for idx = 1:6 

[completedIdx, value] = fetchNext(jobs); 
output{completedIdx} = value; 

end 
delete(pool); 



SPMD and Distributed Arrays



SPMD



Overview

• spmd (Single Program Multiple Data)

• labindex and numlabs

• Exchanging data between workers explicitly

• Data transfer to the client using composite arrays



parpool

• Similar to parfor, spmd requires a parpool in order 
for code to run on workers

• If a parpool doesn’t exist, one will start if that is the 
default behavior



spmd

• Code inside spmd blocks run on all workers

• Unlike parfor, variables maintain state between calls to spmd
as well as in parfor

• Can be used for loading data to be used in parfor loops



labindex and numlabs

• Helps control what is executed on a worker
• Inside a spmd block

– labindex returns the rank of the worker

– numlabs returns the total number of workers in the pool



Create a Variant Array on Each of the 
Workers

>> magic_squares



>> approx_pi



Composite Arrays

• Composite: client-side data-type for viewing data on the workers
• Outside of spmd, index with () or {} to get the data of one of 

the workers to the client





Types of Composite Arrays (non-
distributed arrays)

• Replicated

• Variant

• Private



Limitations

• The body of an spmd statement must be transparent

X



Distributed Arrays



Overview

• Distributed Arrays

• Constructing Distributed Arrays

• distributed and codistributed

• Working with Distributed Arrays



parpool

• Similar to spmd, distributed arrays require a parpool
in order for code to run on workers

• If a parpool doesn’t exist, one will start if that is the 
default behavior



Distributed Arrays

• One variable, split over multiple workers

• However, the MATLAB client sees the variable as one

• Mainly of interest with a cluster, combining the memory of 
multiple machines

• If the function has been overloaded for distributed arrays, there 
should be minimal changes to the code



Creating Distributed Arrays (1)

• Matrix creation functions have been overloaded for distributed 
arrays

– zeros(...,’distributed’);

– randn(...,’distributed’);

• If a variable has the same value on all of the workers, use 
distributed directly



Creating Distributed Arrays (2)

• Use case: creating a large matrix from multiple files or one large file 
would not fit into the memory of one computer

• Create data on each worker

• Combined into a distributed array using codistributed.build
and codistributed1d

• Specify the size of the distributed array and optionally the                         
partitioning



Working with Distributed Arrays
• A collection of MATLAB functions are overloaded for distributed arrays

• Overloaded functions can be called similar to other data types (e.g. numeric)

• Call gather to convert back to a numeric array



Using Distributed Arrays on Workers

>> distrib_example



distributed and codistributed

• The same distributed array will have a data type of:
– distributed: on the client 

– codistributed: on the workers (within a spmd block)



Using Codistributed Arrays on 
Workers

>> codistrib_example



GPU-computing



What is needed?
• Matlab
• PCT
• GPU



Suitable problems

• Massively parallel tasks 
• Computationally intensive tasks
• Tasks that have limited kernel size



Options
• Built-in functions
• Functions on array data
• Directly invoke CUDA-code



Control vs Effort

Extensive

Some

Minimal

Level of control Required effort

Built-in functions

Directly invoke 
CUDA code

Functions on array data



Built-in functions
• Accelerate standard (highly parallel) functions

– More than 200 MATLAB functions are already
supported

• Out of the box:
– No additional effort for programming the GPU 

• No accuracy for speed trade-off
– Double floating-point precision computations

Random number generation 
FFT 
Matrix multiplications
Solvers
Convolutions

Min/max  
SVD
Cholesky and LU factorization



Example
maxIterations = 500;

gridSize=1000;

xlim = [-0.748766713922161, -0.748766707771757];

ylim = [ 0.123640844894862,  0.123640851045266];

t = tic();

x = linspace( xlim(1), xlim(2), gridSize );

y = linspace( ylim(1), ylim(2), gridSize );

[xGrid,yGrid] = meshgrid( x, y );

z0 = xGrid + 1i*yGrid;

count = ones( size(z0) );

% Calculate

z = z0;

for n = 0:maxIterations

z = z.*z + z0;

inside = abs( z )<=2;

count = count + inside;

end

% show

count = log( count );

CPU serial



Example cont’d
t = tic();

x = gpuArray.linspace( xlim(1), xlim(2), gridSize );

y = gpuArray.linspace( ylim(1), ylim(2), gridSize );

[xGrid,yGrid] = meshgrid( x, y );

z0 = complex( xGrid, yGrid );

count = ones( size(z0), 'gpuArray' );

% Calculate

z = z0;

for n = 0:maxIterations

z = z.*z + z0;

inside = abs( z )<=2;

count = count + inside;

end

count = log( count );

% Show

count = gather( count ); % Fetch the data back from the GPU

naiveGPUTime = toc( t );

Built-in functions



Example cont’d
t = tic();

x = gpuArray.linspace( xlim(1), xlim(2), gridSize );

y = gpuArray.linspace( ylim(1), ylim(2), gridSize );

[xGrid,yGrid] = meshgrid( x, y );

% Calculate

count = arrayfun( @pctdemo_processMandelbrotElement, ...

xGrid, yGrid, maxIterations );

% Show

count = gather( count ); % Fetch the data back from the GPU

gpuArrayfunTime = toc( t );

function count = pctdemo_processMandelbrotElement(x0,y0,maxIterations)
z0 = complex(x0,y0);
z = z0;
count = 1;
while (count <= maxIterations) && (abs(z) <= 2)

count = count + 1;
z = z*z + z0;

end
count = log(count);

Functions on array data



//
// Generated by NVIDIA NVVM Compiler
//
// Compiler Build ID: CL-19856038
// Cuda compilation tools, release 7.5, V7.5.17
// Based on LLVM 3.4svn
//

.version 4.3

.target sm_20

.address_size 64

// .globl _Z12doIterationsddj

.visible .func (.param .b32 func_retval0) _Z12doIterationsddj(
.param .b64 _Z12doIterationsddj_param_0,
.param .b64 _Z12doIterationsddj_param_1,
.param .b32 _Z12doIterationsddj_param_2

)
{

.reg .pred %p<3>;

.reg .b32 %r<7>;

.reg .f64 %fd<14>;

ld.param.f64 %fd7, [_Z12doIterationsddj_param_0];
ld.param.f64 %fd8, [_Z12doIterationsddj_param_1];
ld.param.u32 %r4, [_Z12doIterationsddj_param_2];
mov.u32 %r6, 0;
mov.f64 %fd12, %fd8;
mov.f64 %fd13, %fd7;

BB0_1:
mov.f64 %fd2, %fd13;
mov.f64 %fd1, %fd12;
mul.f64 %fd3, %fd1, %fd1;
mul.f64 %fd4, %fd2, %fd2;
add.f64 %fd9, %fd4, %fd3;
setp.gtu.f64 %p1, %fd9, 0d4010000000000000;
@%p1 bra BB0_3;

add.s32 %r6, %r6, 1;
sub.f64 %fd10, %fd4, %fd3;
add.f64 %fd5, %fd10, %fd7;
add.f64 %fd11, %fd2, %fd2;
fma.rn.f64 %fd6, %fd11, %fd1, %fd8;
setp.le.u32 %p2, %r6, %r4;
mov.f64 %fd12, %fd6;
mov.f64 %fd13, %fd5;
@%p2 bra BB0_1;

BB0_3:
st.param.b32 [func_retval0+0], %r6;
ret;

}

Example cont’d
% Load the kernel

cudaFilename = 'pctdemo_processMandelbrotElement.cu';

ptxFilename = ['pctdemo_processMandelbrotElement.',parallel.gpu.ptxext];

kernel = parallel.gpu.CUDAKernel( ptxFilename, cudaFilename );

% Setup

t = tic();

x = gpuArray.linspace( xlim(1), xlim(2), gridSize );

y = gpuArray.linspace( ylim(1), ylim(2), gridSize );

[xGrid,yGrid] = meshgrid( x, y );

% Make sure we have sufficient blocks to cover all of the locations

numElements = numel( xGrid );

kernel.ThreadBlockSize = [kernel.MaxThreadsPerBlock,1,1];

kernel.GridSize = [ceil(numElements/kernel.MaxThreadsPerBlock),1];

% Call the kernel

count = zeros( size(xGrid), 'gpuArray' );

count = feval( kernel, count, xGrid, yGrid, maxIterations, numElements );

% Show

__device__
unsigned int doIterations( double const realPart0,

double const imagPart0,
unsigned int const maxIters ) {

// Initialize: z = z0
double realPart = realPart0;
double imagPart = imagPart0;
unsigned int count = 0;
// Loop until escape
while ( ( count <= maxIters )

&& ((realPart*realPart + imagPart*imagPart) <= 4.0) ) {
++count;
// Update: z = z*z + z0;
double const oldRealPart = realPart;
realPart = realPart*realPart - imagPart*imagPart + realPart0;
imagPart = 2.0*oldRealPart*imagPart + imagPart0;

}
return count;

}

Nvcc –ptx code.cu



Example cont’d
ans: 'finished’

count: [1000x1000 double]

cpuTime: 15.9700

gpuArrayfunTime: 0.7010

gridSize: 1000

inside: [1x1 gpuArray]

maxIterations: 500

n: 500

naiveGPUTime: 5.5109

t: 1443545040634310

x: [1x1 gpuArray]

xGrid: [1x1 gpuArray]

xlim: [-0.7488 -0.7488]

y: [1x1 gpuArray]

yGrid: [1x1 gpuArray]

ylim: [0.1236 0.1236]

z: [1x1 gpuArray]

z0: [1x1 gpuArray]
Laptop 6.24s



//
// Generated by NVIDIA NVVM Compiler
//
// Compiler Build ID: CL-19856038
// Cuda compilation tools, release 7.5, V7.5.17
// Based on LLVM 3.4svn
//

.version 4.3

.target sm_20

.address_size 64

// .globl _Z4add1Pdd

.visible .entry _Z4add1Pdd(
.param .u64 _Z4add1Pdd_param_0,
.param .f64 _Z4add1Pdd_param_1

)
{

.reg .f64 %fd<4>;

.reg .b64 %rd<3>;

ld.param.u64 %rd1, [_Z4add1Pdd_param_0];
ld.param.f64 %fd1, [_Z4add1Pdd_param_1];
cvta.to.global.u64 %rd2, %rd1;
ldu.global.f64 %fd2, [%rd2];
add.f64 %fd3, %fd2, %fd1;
st.global.f64 [%rd2], %fd3;
ret;

}

Simple example
k = parallel.gpu.CUDAKerne('test.ptx','test.cu');

result = feval(k,2,3)

Matlab

__global__ void add1( double * pi, double c ) 
{

*pi += c;
}

Kernel (test.cu) 



Multiple GPUs
parpool(2)

spmd

gd=gpuDevice;

idx=gd.Index;

disp(['Using GPU ',num2str(idx)]);

end

parfor ix = 1:10

gd=gpuDevice;

d(ix)=gd.Index;

end

Lab 1: 
Using GPU 1

Lab 2: 
Using GPU 2

>> d

d =

2     2     2     2     
1     1     1     2     2     
1




