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HPC resources used

® Computer resources at C3SE at Chalmers in Goteborg

® Computer cluster: Neolith NSC Linkdping 6440 cores
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Automatic aerodynamical Shape

Optimization (Students E. Helgason
and H. Hafsteinsson)

Programs used:
* Fire

* Sculptor

* modeFrontier

Car model used:

Full scale experimental
model from Volvo Cars
named the VRAK

1.7 m

1.6 m
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Process
avirFFire < B RSSEE

SCULPTOR

OPTIMAL SOLUTIONS

®  AVL/Fire: Mesh generation
¢  Sculptor: Create volume for mesh morphing
®  modeFrontier: Adjust control parameters for mesh morphing

®  Sculptor: Mesh morphing

®  AVL/Fire: CFD calculations

® modeFrontier: Collects results and change mesh morphing
parameters

®  modeFrontier: Optimal solution selected
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Control volume set in Sculptor

Morphing the rear end of the car
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Workflow in modeFrontier

Rear_r

® Here one input variable (Rear_r)
controls the mesh deformation in
Sculptor InputFile
® ModeFrontier adjusts the control
variable and collects results for Cd
®  Built in optimization algorithms in
modeFrontier can be used, i.e. ;
SIMPLEX or the gradient based S tkeo—o[Fo——o P/
algorithm NLPQLP 1 7
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Deformed mesh

Upper right fig: Upper limit of the
deformation parameter (Rear_r = 0.3)
Lower left fig: Undeformed car (Rear_r = 0)
Lower right fig: Lower limit of the
deformation Paramater (Rear_r =-0.2)
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Results from modeFrontier

¢ Automatic Optimization with SIMPLEX algorithm using
steady k-e turbulence model with inlet velocity of 10 m/s.

® Using course mesh with approx 300.000 cells

® Each simulation runs from t=0.
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The control variable Rear_r = 0, corresponds to the original car
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Automatic Optimization with the NLPQLP algorithm
using unsteady k-z-f turbulence model with inlet
velocity of 140 km/h

®  Using finer mesh with boundary layers, approx
3.000.000 cells

®  Firstrun is the original VRAK 0.34 — . . . . . . .

®  Small modifications are made on the surface and the
simulation is restarted with results from previous 033k |
simulation
¢  Each modification runs for 0.5s
®* Last0.1s gives average Cd o3z . v o |
®  Horizontal dotted line represents experimental value of | T T T | I
the drag coefficient for orginal VRAK ZOAE L1 S el s s
*  Cd-exp=3.05 FESNNNEE S AN N S S S
®  Vertical lines emphasize at what time simulation is 03k ) |
restarted with new deformed geometry
029+ 1
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Results from ModeFRONTIER

® Cdis reduced by 3% in four simulations.
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Modifying the car
surface in Sculptor e e

Upper right fig: Upper limit of the

Deformation parameter, Rear r=0.1 e e O M *
Lower left fig: Undeformed car,
& L Wi ¢
Rear r=0.0
Lower right fig: Lower limit of the | ad °
deformation Paramater, Rear_r = -0.1 s !
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Lower right fig: Lower limit of the

Deformed mesh

Upper right fig: Upper limit of the
Deformation parameter, Rear_r =0.1
deformation Paramater, Rear_r =-0.1

Lower left fig: Undeformed car,

Rear r=0.0
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Fear_r

Workflow in %)

ModeFrontier i

DOE Scheduler:Beolution Strateqy  Queueitartsy sh ]i QueueEncss S5H29 5h55 Exit
O O WV W
[ T
Eﬂﬂo :::»%;O—[}E[} O DQO C|| = O L‘:LEO L‘:QO—[} w
O O o O
Cd

®  modeFrontier adjusts the control variable and collect results for Cd from Fire
®  Built in optimization algorithm can be used to minimize Cd
® ESis chosen based on how many concurrent designs it can run

®  modeFrontier and Sculptor run locally

®  One deformation is performed at a time

®  The mesh is transferred to the cluster

®  CFD calculations are restarted using the new mesh

®  Each design takes ~ 22 h

¢ Allflow results for each design can be obtained from the cluster
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System specs

®  Computer cluster: Neolith NSC Linkdping 6440 cores

o Processor: Intel Xeon E5345 Quad Core Processor 2.33 GHz, 4MB Level cache
e Interconnect: Infiniband ConnectX interconnect

® Node memory: 16 GiB

®  Computer resources at C3SE at Chalmers in Goteborg

®  Number of cells = 4.0 -106

= Simulation runs on 48 CPUs

®  Time step execution time ~ 80s

® Time step AT =0.001s

®  Time for simulation to run 1.0s ~ 22h

® A particle will pass the car 10 times during 1.0s
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Results from modeFrontier
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®  Four concurrent simulations are made each time.
® 8 DOE points are equally distributed over the design space.
®  Optimization algorithm (ES) is used locally around the best point found in the DOE sequence.
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Introduction

Task
® Minimize rolling and yawing moments of a train

Programs

® AVL FIRE® — Mesh creation and CFD simulations
® Sculptor — Mesh deformation

® modeFrontier - Optimization
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The Optimization Process

Mesh Generation Optimization Mesh Deformation

SCULPTOR
.

A OPTIMAL SOLUTIONS

l
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Computational Domain

88.6 H

109 H

L=0.76 m
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30 side wind
Ueo U, =30m/s
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‘Mesh deformation in Sculptor

Creation of ASD volume
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Deforming the train surface in Sculptor

Deformation parameter
A€ [-0.002,0.004]
A, € [-0.004,0.004]

A, = 0.000
A, = 0.000
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Deforming the train surface in Sculptor

Deformation parameter
A€ [-0.002,0.004]
A, € [-0.004,0.004]

A, = -0.002
A, = 0.000
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Deforming the train surface in Sculptor

Deformation parameter
A€ [-0.002,0.004]
A, € [-0.004,0.004]

A, = 0.000
A, = 0.000
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Deforming the train surface in Sculptor

/

f
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Deformation parameter
A, € [-0.002,0.004]
A, € [-0.004,0.004]

A, = 0.004
A, = 0.000
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Deforming the train surface in Sculptor

Deformation parameter
A€ [-0.002,0.004]
A, € [-0.004,0.004]

A, = 0.000
A, = 0.000
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Deforming the train surface in Sculptor

Deformation parameter
A€ [-0.002,0.004]
A, € [-0.004,0.004]

A, = 0.000
A, = -0.004
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Deforming the train surface in Sculptor

Deformation parameter
A€ [-0.002,0.004]
A, € [-0.004,0.004]

A, = 0.000
A, = 0.000
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Deforming the train surface in Sculptor

Deformation parameter
A€ [-0.002,0.004]
A, € [-0.004,0.004]

A, = 0.000
A, = 0.004
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Original \

2 | o

A, € [-0.002,0.004] A, e [-0.004,0.004]
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Optimization

Turb. U,[m/s] Num.Cells Deform. Objective Opt.Alg
Model Par.

steady 30 5 700 000 2 min M, M, ES
k-z-f
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top2ZHor  top2Ver =
B Workflow in
L] ol -
7 T modeFrontier
InputFile
e
Scheduler:Beolution Strategy QueuesStartsy sh TQununEnLJSE 35H29 - 3h55 - 5h55_1 - Exit
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* Two objectives, minimize M, and M,

® Optimization algorithm, Evolution Strategy (ES)
® modeFrontier and Sculptor run locally

®* AVL FIRE ® runs on cluster

® Each design is restarted from original train

-;'?’
‘*ﬂ

DOE Concurrent Size of Generations Simulation CPU’s Total CPU
Points Designs Generation Time [ h] Time[ h]

16 8 16 5 5 48 18 000
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Results
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P[Pa]
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The active flow control problem

1. Reference experimental work

pressure

L

trip tapes

reference / xljotwire
\N g - L p
' . [ * ) |

| actuator
' slots

h

L 1

[
[1] Henning et al. Feedback control applied to the bluff-body wake. In

King R. (ed.), Active Flow Control, Springer-Verlag, 369-390. 2007.

* Open and closed-loop control;
* Re,intherange of 2.0 104-7.0 10%

* Harmonic actuation in time through two spanwise slots at 45° with the
streamwise direction;

* Drag reduction of =15% at St,=0.17, in-phase actuation.
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Model and computational details

3. Boundary conditions:

Inflow — No-sli
. UOO \\ Outflow j_
— o I >Harmonfc Actuation C
— S
— D
- ./
EE— ﬁ No-slip
X 1 L Xg

* At the slots, oscillatory forcing is implemented as:

.

Usior = Uasin(wat)(cos( b)i + sin(¢)j)

*The actuation amplitude follows from momentum coefficient: As 12
5 U

C,=—
T H UL
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Model and computational details

4. Resolution and numerical details:

yt =yut/v Azt =Azu*/r Azt = Azut/v

Mean 1.06 30.02 13.78
Maximum 4.78 146.63 146.32

Table 4.1: Spatial resolution in the LES at Re, = 2 x 10%.
 Total number of nodes = 5.5 106;
 Spatial resolution acording to

yt < 2. Azt ~ 15 — 40 and Az™ ~ 50 — 150

* Physical time step = 1.0 104
* 96.5% of the cells with CFL < 1;
*Space discretization: 2nd order central differences;
» Temporal discretization: Three-time-level Scheme (implicit second order scheme);
« Solution algorithm: SIMPLE;

* Turbulence model: LES — Smagorinsky Model; C.=0.1.
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Drag control results

Drag control results from the LES at Re,=2 104, St,=0.17 and C,=0.015:
 11% drag reduction achieved;

 20% pressure recovery in the near-wake region;

xH=0.014 x/H=0.014
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Exploring the flow

The time-averaged flow:

Natural flow Controlled flow

« Reduction of the thickness of the upper and lower edge thin vortices;

* Foci C,/C, and the saddle point are displaced further downstream by 20%
from their streamwise locations in the natural case.
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Comparison of time-averaged flows
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LES of the Active Flow Control Around a 2D Ahmed Body
Sinisa Krajnovic

Time = 4.7130
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How the communication beetween Matlab
and Fire works

s ‘
_ | Force and

‘ FIRE | pressure files

velocity

. .’-
Actuation ‘

Pressure at
the back

Axt—file Axt—file

MATLAB
with Control System

Result files
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Phase control

HP

Act ll\ili\‘-l!
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