

Shape optimization and active flow control for improved aerodynamic properties

Siniša Krajnovic

HPC resources used

- Computer resources at C3SE at Chalmers in Göteborg
- Computer cluster: Neolith NSC Linköping 6440 cores

Automatic aerodynamical Shape Optimization (Students E. Helgason and H. Hafsteinsson)

Programs used:

- Fire
- Sculptor
- modeFrontier

Car model used: Full scale experimental model from Volvo Cars named the VRAK

modeFRONTIER

- AVL/Fire: Mesh generation
- Sculptor: Create volume for mesh morphing
- modeFrontier: Adjust control parameters for mesh morphing
- Sculptor: Mesh morphing
- AVL/Fire: CFD calculations
- modeFrontier: Collects results and change mesh morphing parameters
- modeFrontier: Optimal solution selected

Control volume set in Sculptor

Morphing the rear end of the car

Workflow in modeFrontier

- Here one input variable (Rear_r) controls the mesh deformation in Sculptor
- ModeFrontier adjusts the control variable and collects results for Cd
- Built in optimization algorithms in modeFrontier can be used, i.e.
 SIMPLEX or the gradient based algorithm NLPQLP

Deformed mesh

Upper right fig: Upper limit of the deformation parameter (Rear_r = 0.3) Lower left fig: Undeformed car (Rear_r = 0) Lower right fig: Lower limit of the deformation Paramater (Rear_r = -0.2)

Results from modeFrontier

- Automatic Optimization with SIMPLEX algorithm using steady k-e turbulence model with inlet velocity of 10 m/s.
- Using course mesh with approx 300.000 cells
- Each simulation runs from t=0.

The control variable Rear_r = 0, corresponds to the original car

Chalmers University of Technology

Flow visualization

Automatic Optimization with the NLPQLP algorithm using unsteady k-z-f turbulence model with inlet velocity of 140 km/h

- Using finer mesh with boundary layers, approx 3.000.000 cells
- First run is the original VRAK
- Small modifications are made on the surface and the simulation is restarted with results from previous simulation
- Each modification runs for 0.5s
- Last 0.1s gives average Cd
- Horizontal dotted line represents experimental value of the drag coefficient for orginal VRAK
- Cd-exp = 3.05
- Vertical lines emphasize at what time simulation is restarted with new deformed geometry

Results from ModeFRONTIER

• Cd is reduced by 3% in four simulations.

Chalmers University of Technology

Modifying the car surface in Sculptor

Upper right fig: Upper limit of the Deformation parameter, Rear_r = 0.1 Lower left fig: Undeformed car, Rear_r = 0.0 Lower right fig: Lower limit of the deformation Paramater, Rear_r = -0.1

Deformed mesh

Upper right fig: Upper limit of the Deformation parameter, Rear_r = 0.1 Lower left fig: Undeformed car, Rear_r = 0.0 Lower right fig: Lower limit of the deformation Paramater, Rear_r = -0.1

Cd

MinCd

Rear_r

DOE Scheduler: Evolution Strategy QueueStart 57 Sh QueueEnd58 SSH29 Sh55 Exit

InputFile

- modeFrontier adjusts the control variable and collect results for Cd from Fire
- Built in optimization algorithm can be used to minimize Cd
- ES is chosen based on how many concurrent designs it can run
- modeFrontier and Sculptor run locally
- One deformation is performed at a time
- The mesh is transferred to the cluster
- CFD calculations are restarted using the new mesh
- Each design takes ~ 22 h
- All flow results for each design can be obtained from the cluster

System specs

- Computer cluster: Neolith NSC Linköping 6440 cores
- Processor: Intel Xeon E5345 Quad Core Processor 2.33 GHz, 4MB Level cache
- Interconnect: Infiniband ConnectX interconnect
- Node memory: 16 GiB
- Computer resources at C3SE at Chalmers in Göteborg
- Number of cells $\approx 4.0 \cdot 10^6$
- Simulation runs on 48 CPUs
- Time step execution time ~ 80s
- Time step $\Delta T = 0.001s$
- Time for simulation to run 1.0s ~ 22h
- A particle will pass the car 10 times during 1.0s

Results from modeFrontier

- Four concurrent simulations are made each time.
- 8 DOE points are equally distributed over the design space.
- Optimization algorithm (ES) is used locally around the best point found in the DOE sequence.

Introduction

Task

• Minimize rolling and yawing moments of a train

Programs

- AVL FIRE[®] Mesh creation and CFD simulations
- Sculptor Mesh deformation
- modeFrontier Optimization

The Optimization Process

Mesh Generation

Optimization

Mesh Deformation

Computational Domain

Mesh deformation in Sculptor

Creation of ASD volume

Deformation parameter $\Delta_1 \in [-0.002, 0.004]$ $\Delta_2 \in [-0.004, 0.004]$

 $\Delta_1 = 0.000$ $\Delta_2 = 0.000$

Deformation parameter $\Delta_1 \in [-0.002, 0.004]$ $\Delta_2 \in [-0.004, 0.004]$

 $\Delta_1 = -0.002$ $\Delta_2 = 0.000$

Deformation parameter $\Delta_1 \in [-0.002, 0.004]$ $\Delta_2 \in [-0.004, 0.004]$

 $\Delta_1 = 0.000$ $\Delta_2 = 0.000$

Deformation parameter $\Delta_1 \in [-0.002, 0.004]$ $\Delta_2 \in [-0.004, 0.004]$

 $\Delta_1 = 0.004$ $\Delta_2 = 0.000$

Deformation parameter $\Delta_1 \in [-0.002, 0.004]$ $\Delta_2 \in [-0.004, 0.004]$

 $\Delta_1 = 0.000$ $\Delta_2 = 0.000$

Deformation parameter $\Delta_1 \in [-0.002, 0.004]$ $\Delta_2 \in [-0.004, 0.004]$

 $\Delta_1 = 0.000$ $\Delta_2 = -0.004$

Deformation parameter $\Delta_1 \in [-0.002, 0.004]$ $\Delta_2 \in [-0.004, 0.004]$

 $\Delta_1 = 0.000$ $\Delta_2 = 0.000$

Deformation parameter $\Delta_1 \in [-0.002, 0.004]$ $\Delta_2 \in [-0.004, 0.004]$

 $\Delta_1 = 0.000$ $\Delta_2 = 0.004$

$\Delta_1 \in [-0.002, 0.004]$

 $\Delta_2 \in [-0.004, 0.004]$

Optimization

Turb. Model	U _∞ [m/s]	Num. Cells	Deform. Par.	Objective	Opt. Alg
steady k-z-f	30	5 700 000	2	min M _r , M _y	ES

Each design is restarted from original train

DOE Points	Concurrent Designs	Size of Generation	Generations	Simulation Time [h]	CPU's	Total CPU Time [h]
16	8	16	5	5	48	18 000

Results

	Δ_1	Δ_2	My [Nm]	%	Mr [Nm]	%
Original			0.98		0.13	
DOE	0.00298	-0.0036	1.01	3.3	0.11	-21.3

Results

	Δ_1	Δ_2	My [Nm]	%	Mr [Nm]	%
Original			0.98		0.13	
DOE	0.00298	-0.0036	1.01	3.3	0.11	-21.3
ES	0.00364	-0.004	1.06	7.8	0.10	-33.4

The active flow control problem

1. Reference experimental work

[1] Henning et al. Feedback control applied to the bluff-body wake. In King R. (ed.), *Active Flow Control*, Springer-Verlag, 369-390. 2007.

- Open and closed-loop control;
- Re_h in the range of 2.0 $10^4 7.0 \ 10^4$;
- Harmonic actuation in time through two spanwise slots at 45° with the streamwise direction;
- Drag reduction of $\approx 15\%$ at St_A=0.17, in-phase actuation.

Model and computational details

- 3. Boundary conditions:

• At the slots, oscillatory forcing is implemented as:

$$\vec{u}_{slot} = u_A \sin(\omega_A t)(\cos(\phi)\hat{i} + \sin(\phi)\hat{j})$$

•The actuation amplitude follows from momentum coefficient:

$$C_{\mu} = \frac{4s}{H} \frac{u_A^2}{U_{\infty}}$$

Model and computational details

4. Resolution and numerical details:

	$y^+ = y u^* / \nu$	$\Delta z^+ = \Delta z u^* / \nu$	$\Delta x^+ = \Delta x u^* / \nu$
Mean	1.06	30.02	13.78
Maximum	4.78	146.63	146.32

Table 4.1: Spatial resolution in the LES at $Re_h = 2 \times 10^4$.

- Total number of nodes $\approx 5.5 \ 10^6$;
- Spatial resolution acording to
- Physical time step = $1.0 \ 10^{-4}$;
- 96.5% of the cells with CFL < 1;

•Space discretization: 2nd order central differences;

- Temporal discretization: Three-time-level Scheme (implicit second order scheme);
- Solution algorithm: SIMPLE;
- Turbulence model: LES Smagorinsky Model; C_s=0.1.

 $y^+ < 2, \ \Delta z^+ \approx 15 - 40 \ \text{and} \ \Delta x^+ \approx 50 - 150$

Drag control results

Drag control results from the LES at $Re_h=2$ 10⁴, $St_A=0.17$ and $C_u=0.015$:

- 11% drag reduction achieved;
- 20% pressure recovery in the near-wake region;

Exploring the flow

The time-averaged flow:

Natural flow

Controlled flow

- Reduction of the thickness of the upper and lower edge thin vortices;
- Foci C₁/C₂ and the saddle point are displaced further downstream by 20% from their streamwise locations in the natural case.

Comparison of time-averaged flows

How the communication beetween Matlab and Fire works

Phase control

