

History of the partnership between SMHI and NSC Per Undén

Outline

- Pre-history and NWP
- Preparations parallelisation
- HPD Council
 - Decision and early developments
- Climate modelling
- Other applications
- HPD Project at SMHI
- Further experiences and developments
 - Conclusions

Pre-history : Swedish NWP before NSC

- Numerical Weather Prediction (NWP) came to Sweden 1954
 - Started in 1949 Eniac in US (J v Neuman, Fjörtoft, Rossby)
 - 1954 at Stockholm University Inernational Met Institute, Air Force
 - BESK computer
 - One level model, initial data from radio sondes
 - 1-2 day forecasts of general flow
- SMHI involved and own computers
 - Data Saab D21 (1962, own one 1964)
 - D22, D23 (1975) (-> 0.1 MFlop/s
 - Univac 1121 (-> 0.3)
 - Vax computers (1980's)
- SMHI and Swedish Air Force
 - CONVEX 3840 4 vector processors (1992-1997) (300 MFlop/s)
 - Security issues communication SMHI-underground base

Numerical Weather Prediction SMH

Continuity $\therefore \frac{\partial \rho}{\partial t} = -\nabla . (\rho \widetilde{V})$

NSC 20v

- Momentum $\frac{d\widetilde{V}}{dt} = -2\widetilde{\Omega} \times \widetilde{V} \alpha \nabla p g\widetilde{k} + \widetilde{\tau}$
- Temperature $c_p \frac{dT}{dt} = Q + \frac{RT}{p} \omega$

- Gas law $p = \rho RT$
- Humidity dq/dt = E C

.

Intermittent data assimilation SMH

4 Dimensional Variational Data Assimilation Iterative fitting of a Forecast trajectory to observations Over a time window 6-12 hours

Preparation for parallel HPC system for SMHI

- Resolution of HIRLAM model
 - 55 km 19 levels
 - 44 km 19 levels
 - 22 km 31 levels
- Saturated system
- Price of vector computers very high
- MPPs coming on line
 - experience with MASPAR 600 MFlops/s eff.
 - and CRAY T3D (900 MFlop/s eff.)
 - HIRLAM parallelised (SHMEM and MPI)
 - Nils Gustafsson and Deborah Salmond
 - Also oceanographic model HIROMB parallelised
 - Jarmo Rantakokko,Tomas Wilhelmsson,

NSC 20y

High Resolution Limited Area Modelling

(Aire Limitee Adaption Dynamique InterNationale)

HIRLAM ALADIN

HPD Council, NSC and the Agreement

- Urgent need of HPC facility for SMHI
- HPD Council and SMHI involvement
 - Lars Moen, SMHI
 - Jörgen Nilsson, SMHI and Anders Söderman, Armed Forces
 - Anders Ynnerman, NSC
 - Visionary move to cooperate with NSC and <u>SAAB</u>
 - Note: high security solution!
- PDC (KTH) or NSC (LiU) ?
- LiU and SAAB SCANIA and KTH agreement and SMHI
 - Share a HPC of highest international class
 - Both vector and MPP
 - Into effect 1995
 - SMHI needed 10 GFlops/s eff. During 4*1.5 hours
 - Proposal for PVC 3-4 Gfl and MPP 64 Gfl (PDC)

The Early developments and installations

- May 1995 38M SEK allocated to PDC for a MPP
- 37.5M to NSC for a PVC
- CRAY YMP C90 with 6 vector processors to NSC
 - October 1996
- CRAY T3E eventually 256 PE
 - Late 1996 spring 1997
- ATM link NSC SMHI 2 Mbits/s
 - Worked well (until later)

CRAY C94 and T3E

- T3E 216 PE:s-> 256 PE:s
- C90 6 (4 planned) PV shared mem

Climate modelling at SMHI and NSC

- MISTRA funding for Swedish climate modelling mid 90's
- SWECLIM programme from 1997
- Initially 1-4 Gflops/s needed
 - More resources needed at NSC
 - Later much more
- SMHI Rossby Centre formed
 - Erland Källén
 - Lars Moen
 - Marku Rummukainen
- HIRLAM model used as well
 - Climate version for long term budgets correctbut parallised
 - Coupling with ocean models
- Much increasing demands 2000, 2002, 2005, 2007
 - Monolith 400 cores, Tornado, KWA Ekman/Vagn

More applications SMHI-NSC

- Global Earth System Modelling EC-EARTH consortium
 - Based on ECMWF seasonal prediction system
 - IFS atmospheric model and NEMO oceanographic
 - Going from scenarios (50-100 years) to decadal prediction
- Rossby Centre Oceanographic model RCO
 - Coupled with climate model
- High Resolution Ocean Model for the Baltic HIROMB
 - 3-dimensional 3 1 N Mile
 - Real time forecasting coupled from HIRLAM NWP
- MATCH Meteorological Aerosol Transport and CHemistry model
 - Driven by HIRLAM or ECMWF

The HPD Project at SMHI

- Operationalisation of HIRLAM at NSC
 - Use of MPP, parallel version of HIRLAM
 - Pre-processing at SMHI (observations)
 - Post-processing at SMHI (field interpolations)
 - Communication
 - Control and supervise job sequence
 - Errors in the HIRLAM pre-processing of observations at SMHI
 - Errors in the formulation of the Semi-Lagrangian advection scheme
 - Took time to correct
 - Eulerian version operational on C90 december 1997
 - Took more time than anticipated
 - Semi Lagrangian model corrected and T3E operational end of 1998

•

Dynamics

Semi-Lagrangian advection

du/dt = L + N + P

Eulerian advection

 $\partial u/\partial t = -u\delta u/\delta x + L + N + P$

The HPD Project at SMHI (II)

- Correction of the observational pre-processing 1998
- Correction of the semi-Lagrangian scheme 1998
 - On T3E first
 - T3E operational machine
- Reliability of T3E poor -> always keep a back-up machine!
 - C90 backup machine

Further (+) experiences and later developments

- 3 and 4 dimensional variational assimilation developed on the T3E
 - Good vehicle for research developments and high capacity
- C90 getting old towards 1999
- SGI 2000 procured 2000 SGI 3800
 - Used together with T3E
- The era of Linux clusters!
 - SMHI NWP on Bris 36 cores 2002
 - Blixt 2005 174 cores (dual CPU)
- Dedicated clusters operations- research- other users etc.
- One cluster at SMHI eliminate communication problems
- SUNET is now used
- MARS Meteorological Archiving and Retrieval System installed 2007-2009

MARS Server Architecture

A meteorological language

Retrieve,		
date	=	20010101/to/20010131,
parameter	=	temperature/geopotential,
type	=	forecast,
step	=	12/to/240/by/12,
levels	=	1000/850/500/200,
grid	=	2/2,
area	=	-10/20/10/0

MARS data stored in hyper-cubes Possible to extract data along any "direction" Computational operations possible on data

Conclusions

- A very successful partnership over 15 years !
- High Performance Computing power has been provided at best possible price / performance ratio
- Provided for
 - Weather forecasting
 - Ocean forecasting
 - Climate modelling
- Super computer expertise and optimisation of our codes
- Efficient and cost-efficient storage solutions
 - For HPC users
 - For other SMHI file servers as well
- Back up machine to provide reliable operational service
- Communication links crucial