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4 .The optimal results for small n and ¢

‘While our bounds for D(n, g) for a fixed ¢ are quite good they are still far from
giving us the exact values of D(n, ¢), and the bounds for growing ¢ even more so.
In order to determine the exact values for small n and ¢ and get a more detailed.
picture of how the Cayley graph develops we have performed a computational
investigation as well. .

4.1 Experimental set-up

We wrote a ¢ program which performs a breadth first search from the identity
matrix. In the standard way the program keeps track of a ‘state’ of each vertex—
whether the vertex is in the current levél, the next level, some earlier level, or
has not yet been seen~—whereas there is no explicit representation of edges. In
order to manage the larger graphs the vertex states were coded using only 2
bits of storage per vertex. This was done by allocating a large bit vector and
then assigning to each matrix with nonzero columns a pair of consecutive bits
within this vector; in Table 1-we can see the memory requirements for small
n and ¢. As there are ¢™ — 1 different values for a nonzero column, a unique
position for a matrix could be computed simply by interpreting its n columns-as’
n digits in base ¢™ — 1. This use of column vectors also simplified implementing
the row operations, as we could tabulate the function saying “row operation ¢
transforms the column with number j to the column with number k" and thus
computé the positions of all neighbours of & given vertex through elementary
arithmetic and table look-ups.

n=2|n=3|n=4 n=>5 n==60 n="T
g=2 <1 <1 <1 <1 15| 1.2.10°
g=3] <1] <1| <17 194 | 34.107
g=4 <1 <1 <1][286-10°
g=>5 <1 <1|. 36
g=7 <1 <1y 7725
q=2=8 <1 <1l
g=19 <1 <1 7
g=11 <1 <1
g=13 <l| 3]
qg=16 <1 16 |. .
g=17| <1 28 | -
=19 <1 76
g=23| <1 | 420
g=25| <1| 889

Table 1: Memory requiremént for the Cayley graph in gigabytes.

As the search progresses the program outputs the number of vertices that
belong to each distance class in the graph; these data are shown in tables 3-7. -
An unusual feature is' that some graphs have one very large distance class (see
e.g. Table 4) that can account for well over half the vertices of that graph. In
these cases we could save a large amount of work by first searching forward and
then backward. During the first phase (forward search) the program constructs

1%




the next distance class by applying all generators in our set S to each element in
the current distance class. During the second phase (backward search), which
starts when a predetermined distance class K is reached, the program instead
applies the generators to all matrices not yet encountered in order to see if they
have a neighbour in the previously constructed distance class; in this phase the
processing of a vertex stops as soon as a neighbour in the lower distance class
is found.

Qur program was also para]lehsed using OpenMP The computations were
performed on three different SGI Origin machines. The largest case was the
computation for GL(3,23) which in total used over 430 gigabytes of RAM,
runeing on over 400 processors for several days and accumulating a run time of
4.1 CPUyeazrs. .

The main obstacle to proceedmg to even larger graphs was the amount of
RAM available. Ouf program will access different parts of the RAM in a very '
unpredictable way so a fast shared RAM is essential for this search, and few.
current computers have shared RAMs la.rger than 512 Gb.

4.2 Results 5

In Table 2 we have listed the diameters for all Cayley graphs which could be
reached with the computational rescurces available to us. In tables 3-7 we have
listed the sizes of the-distance classes in the Cayley graphs, i.e., the number of
vertices at a given distaice from the identity matrix. : :

n=2|n=3[n=4|n=5|n=4 ,
g=2 2| 4 T 10- 13 :
g=23 3 6 9| 12
g=4 4 7 11
g=>5 4 7 11

T<qg<23 4 8

Teble 2: Diameter of the Cayley graph

As we can sec from Table 2 the diameter is manotone in both n and ¢, as
we expected, and we state this as a conjecture.

Conjecture 4.1. D(n, q) i8 monotone in both n and .

If we look at the diameters of the graphs for g= 2in Table 2 we find that -
the main term of our asymptotic upper bound f—- in fact agrees remarkably
well with the exact values for small n, predmtmg 4 5,8,10,13 as the first few
diameters. The sizes of the distance classes also agrees well with our concentra-
tion result. For n = 4,5, tables 5 and 6, we see an exponential like drop in the
size of the distance cla.ss as we move away from the la.rgest one.

If we assume that ConJecture 4.1 is true, Table 3 gives us a complete dlsplay
of the phenomena expected to appear as ¢ increases for a fixed n. For ¢ = 2,3
the diameter of D(2,¢) is still less than 4. For ¢ = 4 we find the first matrices
requiring 4 row operations, and we have ¢,(2) = 4, As ¢ continues to increase
the last distance class continues to grow and for ¢ = 13 it contains more than
half of the vertices, giving us g:(2) = 13. We have performed computations for
larger g than those shown in this table as well, and as ¢ continues to increase
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n= 2 - Co -

Tevel [ g=2|qg=3 ]| q=4[q=5]9=7]|g=8|q¢=9[qg=11]g=13 [ g=16
0 1 1 1 1 1. 1 1 1 1 T
1 3 7 11 15 23 27 31 39 47| . 59
2 2 23 b4 103 | 239 326 431 679 | 983 1542
3 17 110 | 313 | 1249 | 2034 | 3161 6385 | 11257 | 22106
4 41 48 504 1140 | 2136 | 6096 | 13920 | 37492

Table 3: Size of the dlstance classes for n=2
a larger and larger proportion of the vertlces belongs to the last dlstauce class,
just as expected. b

n=3 . .

Level | g=2 | g=8]| g=4]| ¢=5 q="T g=2=8 g=9
0 1 1] 1| 1 1 1 1
1 9 18 27 36 54 63 72
2 38 182 404 728 1634 2216 2900
3 78 | 1156 | 3968 9894 33968 53772 81068
4 42 | 4287 { 26046 | 93813 512307 |. 952710 1671753
5 5130 | 92050 | 545628 | 5245120 | 11675814 | 24400482
6 458 | 57846 | 802306 | 21204546 | 63663690 | 171433796
7 198 | 35594 | 6785764 | 39018738 | 141869106
8 734 12708 | 187512

n=23 K - j , : D ] RN ' .

Level g=11 g=13 g=16 g=17 q=19 - g=23
0 1 1 1 1 i 1
1 90 108 135 144 162" 198
2 4626 | 6512 10160 11564 14630 21842
3 158844 - 275006 536516 653178 930548 . 1700256
4 4152327 8702397 21299670 27845457 44776143 100461507
5 78654196 | 202545280 629821474 888097108 | 1623054880 | 4509563860
6 | 798714832 | 2706903968 | 11370766138 | 17699483800 | 37684754564 | 134745058836
7 | 1232008786 | 6628001012 | 47971230510 | 83878534274 | 228871419044 | 1215099678186
8 10492398 | 170983508 | 4163519396+ 8707753322 | 36587912588 | 364987070066

Table 4':' S'ize of the disf;ance classes for n =3

So far the exact va.lues all agreed- well with our expectations, however the

data forn = 3 came as & surpr:se to us. As g increases from 2 to 7 the diameter of
the Cayley graph rapidly grows from 4 {0 8, however once that diameter has been

reached the graphs seem very reluctant to rise any further.. The computation .

for n = 3 was pushed to higher and higher g in the hope of being able to find the
value of ¢,(3), probably the last ¢,(n) forwhich this is computationally feasible,
but as the table shows we have not succeeded. When g was increased a larger
and larger part of the vertices was found in the last three, and later the last’
two, distance classes, but not a single vertex appeared at distance 9. It is quite
possible that there is some undeérlying algebraic property preventing matrices
at large distance when g is small, relative n, but so far we have not found one.
It would be interesting to find shaprper bounds for g,(r). By Theorem 2.4 we
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Level | n=6¢=2
1
45
1075
18195
240934
2589042
22779975
161946260
893603745
3517544498 .
8207684400 .
6816796888 : .
535485765 : C o
18937 .

WO~ M W - O

[
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Table 7: Size of the &istance classes for n =6

infinite sequence where M,, € GL(n,¢) is chosen independently and uniformly-
at random. - _

We have not been able to construct a family of the kind described, but for
small n and g our program can produce the full set of extremal matrices, i.e.
matrices M such that D{M) = D(n, g). In Table 8 we have listed a few examples
for ¢ = 2. For each size we have picked matrices with minimal and maximal
number of non-zero entries. For both s =3 and n = 4, but not for n = 5,.we .
also found that J—I is extremal, where J is the all ones matrix. Note that since -
D(M) = D(M ™) the inverses of all these matrices are also extremal matrices.

So, two natural problems still remain :

Problem 4.2. Find an explicit construction for a sequence af mairices {M hL
'where M, has side n, such. thitn.=o0 (D(M N

Problem 4.3. What is the comple:mty of computmg D(M )¢

5 Matrices over semiﬁelds

As we have seen, one impediment to the- expetimental side of our work has been

the lack of computers. w1th enough RAM to handle the very large graphs that

are involved when g grows, so;we have examined also other ways to vary the

bsse field. One is to consider other algebraic structures than fields as domains -
_ from which to fetch the matrix elements. Such a change of domain also helps

elucidate to which extent properties of the elimination problem depend on the

algebraic structure of the chosen domain, rather than just its size.

Row operations are defined in terms of addition and multiplication, so those
two operations are indispensable, which means the thing replacing the field will ,
at least have to be some kind of ring. Farthermore the Ga.usstordan algorithm,
which provides the constant upper bound on the graph d.la.meter requires that
there exists multiplicative inverses, so the thing replacmg F; should still be

some kind of field. The first generalisation of the (commutatwe) field concept
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