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GROMACS history
• Started in early 90’s in Groningen (Netherlands)

• Originally parallel hardware and software

• Initially, focus has been mainly on high 
performance on small numbers of processors

• Development of novel, efficient algorithms

• Highly efficient implementation

• The past few years: focus on parallel scaling

GPL, http://www.gromacs.org
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GROMACS

• GROningen MAchine for Chemical Simulation

• Core developers:
David van der Spoel (Groningen ➔ Uppsala)
Berk Hess (Groningen ➔ Mainz ➔ Stockholm)
Erik Lindahl (Stockholm)

• Newer developers:
Gerrit Groenhof (Groningen ➔ Göttingen)
Carsten Kutzner (Göttingen)
Roland Schultz (Oak Ridge)
Sander Pronk (Stockholm)
. . .
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Improving performance

• Increasing the time step:

• Use bond constraints, LINCS algorithm (2 fs)

• Remove H-vibrations with virtual sites (5 fs)

• Performance increase: factor 2 or more!

• Reducing the time per step

• Efficient algorithms and code

• Run in parallel over many processors

virtual sites: Feenstra, Hess, Berendsen, J. Comp. Chem. 20, 786 (1999)

LINCS: Hess, Bekker, Fraaije, Berendsen J. Comp. Chem. 18, 1463 (1997)
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GROMACS Approaches 
• Algorithmic optimization:
• No virial in nonbonded kernels
• Single precision by default (cache, BW 

usage)
• Tuning to avoid conditional statements 

such as PBC checks
• Triclinic cells everywhere: can save 

15-20% on system size

• Optimized 1/sqrt(x)

• Used ~150,000,000 times/sec
• Handcoded asm for ia32, x86-64, 

ia64, Altivec, VMX, BlueGene (SIMD)
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GROMACS 4.0

• GROMACS 4.0 released October 2008
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GROMACS 3.3

Hess, Kutzner, Van der Spoel, Lindahl; JCTC 4, 435 (2008)
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8th-shell decomposition
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8th shell: Liem, Brown, Clarke; Comput. Phys. Commun. 67(2), 261 (1991)

Midpoint: Bowers, Dror, Shaw, JCP 124, 184109 (2006)

8th-shell 1/4 of the communication of half-shell
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Dynamic load balancing

Triclinic, 2D example

• Causes of load imbalance:

• Atom imhomogeneity

• Inhomogeneous 
interaction cost

• Statistical fluctuation

• Full, 3D dynamic load 
balancing required

• Hardware cycle counters
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MPMD force calculation

•PME = rapid Ewald summation

•Ubiquitous in simulations today

•Small 3D FFT’s scale badly:
All-to-All communication

•Real space & PME are independent

•Dedicate a subset of nodes
to run a separate PME-only 
version of the program
to improve scaling

Y

X

PME 
FFT over 4 cores

instead of 16 cores
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Parallel constraints
•Constraints required

for 5 fs time steps

•Parallel LINCS algorithm: 
P-LINCS

•LINCS has a (short) finite 
interaction range

•First efficient parallel 
constraint algorithm

Hess; JCTC 4, 116 (2008)
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Flowcharts
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Flowcharts
42 Chapter 3. Algorithms

read_data

Done

NO

output_step

update_r_and_v

more steps ?
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compute_forces
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reset_r_in_box

communicate_r

communicate_and_sum_f

Figure 3.12: The Parallel MD algorithm. If the steps marked * are left out we have the sequential

algorithm again.
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Performance (old slide)

1 μs in 3-4 weeks using 170 CPUs:
50x longer than previously possibleCr

ay
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DLB in action

• 8x6=48 PP cores

• 16 PME cores

• protein: “slow”

• lipids: fast
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Algorithm efficiency

• Protein system:

• T4-lysozyme

• H2O, Cl-

• 24199 atoms

• 1 nm cut-off

• PME
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t=2 fs, no load balancing
t=2 fs, no MPMD PME
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Scaling limits

• Without Particle-Mesh-Ewald

• Weak scaling: no limit

• Strong scaling: ~300 atoms per core

• With Particle-Mesh-Ewald

• “1D”-PME, 100’s of cores

• GROMACS 4.1: “2D”-PME, 1000’s of cores

• GROMACS 5: Multi-grid?
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Membrane protein

• Kv1.2/2.1 voltage-gated
ion channel

• Open & closed state

• Contains a voltage sensor

• How does it work?

• Problem: transition is slow

• Energy barrier: ~10 kBT

• Long simulations: ms, μs Sophie Schwaiger
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0.5 μs simulation
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0.5 μs simulation
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Recent
GROMACS & hardware

developments
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PDC PRACE prototype

• PRACE test machines with 4x6 AMD cores

• 24 core nodes connected with Infiniband

• Issue:
24 cores share
a network
connection
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Global summation
• Most thermo/barostats need global summation

• But this can be relatively VERY expensive

• Avoid when possible!

• GROMACS 3-step
summation procedure:

• MPI_Reduce, 24 cores

• MPI_Allreduce, N nodes

• MPI_Bcast, 24 cores
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Global summation
• Most thermo/barostats need global summation

• But this can be relatively VERY expensive

• Avoid when possible!

• GROMACS 3-step
summation procedure:

• MPI_Reduce, 24 cores

• MPI_Allreduce, N nodes

• MPI_Bcast, 24 cores 24 2x24 4x24 8x240
#cores

0

0.2

0.4

0.6

0.8

m
illi

se
co

nd
s

Time for global summation

single MPI_Allreduce

3 MPI calls

Monday, October 19, 2009



PRACE scaling
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Gromacs scaling on 24-core AMD blade PRACE prototype
331,776-atom system, reaction-field, 2fs steplength

Monday, October 19, 2009



Multi-million atom 
biological system

• Cellulose, H2O, lignocellulosic biomass (biofuel)

• No charged groups -> reaction-field (no PME)

• 3.3 million atoms

Schultz, Linder, Petridis, Smith; JCTC (2009)
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10k scaling

prior to the improvement. The new implementation of the
load balancing is now part of the GIT version of the
GROMACS and will also be included in GROMACS 4.1.

To highlight the computational benefit of using the RF,
the scaling of a simulation of the 3.3 million lignocellulose
system using the PME method is also shown in Figure 9.
The PME simulation was run using NAMD, since this MD
application is known to have good parallel efficiency.57 To
ensure a “fair” comparison between the two electrostatics
methods, some of the parameters of the PME simulation were
adjusted to improve its performance (standard 2 fs time step
for RF and 6 fs full electrostatics time step and neighbor-
list distance update for PME, see Section 2.1 for details). In
particular, the reason the RF calculation is faster than the
PME at low levels of parallelization is that, on a single
processor, the time per step for GROMACS with RF is

shorter than for NAMD with PME. However, we stress that
the aim of this benchmark is a comparison between the
electrostatic treatments and not between the different MD
applications. Two different applications were used simply
because a direct comparison of simulations using different
electrostatics methods with one application is presently not
possible: NAMD, which is presently the most scalable code
using PME on Cray XT, does not have RF implemented,
and GROMACS does not yet have an efficiently scaling PME
implemented, with the consequence that PME calculations
using GROMACS currently scale up to less than 1 000 cores
for large systems (for more details see the Supporting
Information).

The significant difference in the parallel efficiency of the
PME and the RF electrostatics methods, demonstrated in
Figure 9, can be understood by examining the weak scaling
of the parallel FFT required for PME, shown in Figure 11.
In weak scaling, the ratio of the problem size to the number
of cores used in the simulation is held constant. The FFT is
a new and improved implementation, the technical details
of which are presented in Supporting Information, A.3. The
Inset of Figure 11 shows that the new FFT is faster than the
FFTs from LAMMPS-FFT,58 FFTE 4.0,59 and FFTW 3.2.60

In ideal weak scaling, the time, tf, required to perform one

Figure 8. Potentials of mean force for the primary alcohol dihedral ω ) O6-C6-C5-C4: (a) results from all 36 origin chains
and (b) results from all 36 center chains.

Figure 9. Strong scaling of 3.3 million atom biomass system
on Jaguar Cray XT5 with RF. With 12 288 cores the simulation
produces 27.5 ns/day and runs at 16.9TFlops. As a compari-
son, the performance of PME is shown.

Figure 10. Strong scaling of 5.4 million atom system on
Jaguar Cray XT5. With 30 720 cores, 28 ns/day and 33TFlops
are achieved.

Figure 11. Weak scaling of complex-to-complex FFT on Cray
XT5 with FFT implemented as described in Supporting
Information, A.3. The 3.3 million atom system requires the
588 × 128 × 128 FFT. The time required to compute one
FFT step is represented by tf.

ohio2/yct-yct/yct-yct/yct99907/yct2688d07z xppws 23:ver.3 8/11/09 11:00 Msc: ct-2009-00292r TEID: mmh00 BATID: 00000

H J. Chem. Theory Comput., Vol. xxx, No. xx, XXXX Schulz et al.
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What is the limit?

• GROMACS 4.0: linear scaling algorithms

• But still practical limitations:

• File system access at start-up (fexist)

• Data distribution at start-up

• Still some O(#atoms) memory allocation

100M atoms? 100k cores?
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A large machine

• Cray XT5

• 150 000+ AMD Opteron 2.3 GHz cores

• SeaStar 2+ interconnect

• Upgrade planned to 450 000 cores

JaguarPF at Oak Ridge
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Scaling to 150 000

• peptides + H2O

• 102M atoms

• Reaction-field

• 1.2 nm cut-off

• no DLB

0 50 000 100 000 150 000
#cores

0

5

10

15

20

25

(n
s/

da
y)

Monday, October 19, 2009



GROMACS outlook
• Large systems:

• Improve electrostatics scaling

• Medium systems:

• Combine MPI with threads

• Small systems:

• Distributed computing:
GROMACS on Folding@Home
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