
GRID COMPUTING—A HANDS-ON EXPERIENCE

Leif Nixon and Patrick Norman

The Compass portable was the first computer of the Grid company (1984).

List of exercises:

1. Introduction to Nordugrid/Swegrid and ARC
2. Python programming on the grid
3. Program package development
4. Job scheduler
5. Watchdog

Coordinator:
Leif Nixon
National Supercomputer Centre,
Linköping University,
SE-581 83 Linköping, Sweden
e-mail: nixon@nsc.liu.se

Revision 1.22, 2005/01/05 10:38:41

NGSSC course on Grid computing 2

Contents

A Introduction 3
A.1 Computing Grids . 3
A.2 Swegrid and ARC . 3
A.3 Motivation . 3

B Notes on the exercises 5

C Notes on the lab environment 5

D Exercise 1: Introduction to Nordugrid/Swegrid and ARC 6
D.1 Relevant documentation . 6
D.2 Authentication and proxies . 6
D.3 Advanced Resource Connector . 6
D.4 Getting started . 7
D.5 Submitting a Simple Job . 7
D.6 Monitoring jobs . 8
D.7 More Examples . 9

E Exercise 2: Python programming on the grid 12
E.1 Relevant documentation . 12
E.2 Monte Carlo integration . 12

E.2.1 Side note: quasi-random numbers 13
E.3 Exercises . 13

F Exercise 3: Program package development 14
F.1 Relevant documentation . 14
F.2 Runtime environments and Program packages 14
F.3 Random walk problem . 14
F.4 The make utility program . 15
F.5 Exercises . 16

G Exercise 4: Job scheduler 17
G.1 Relevant documentation . 17
G.2 Scheduling of large number of tasks with distributed control 17
G.3 Exercises . 20

H Exercise 5: Watchdog 21
H.1 Relevant documentation . 21
H.2 Scheduling of large number of tasks with local control 21
H.3 Exercises . 21

I Appendix: A basic random walk program 23

NGSSC course on Grid computing 3

A Introduction

A.1 Computing Grids

The exercises of this course will introduce you to the use of computing grids. A com-
puting grid may in this context be considered as:1

Grid is a type of parallel and distributed system that enables the sharing,
selection, and aggregation of geographically distributed “autonomous” re-
sources dynamically at runtime depending on their availability, capability,
performance, cost, and users’ quality-of-service requirements.

This definition of a grid is quite abstract and provide little insight into the problem of
accessing the grid and to get your application to run on the grid resources. The level of
abstractness is intentional, however, and makes the concept of a grid much wider than
the concept of a cluster. If one compares a grid with a cluster, the main differences
lies in the way the resources are managed. In case of clusters, the resource allocation is
performed by a centralized resource manager and all nodes cooperatively work together
as a single unified resource, whereas, in case of grids, each node has its own resource
manager and does not aim at providing a single system view. It is therefore clear that a
middleware is needed to bind together the nodes of the grid. The middleware needs to
be concerned with the aspects mentioned above (availability, capability, performance,
cost, and users’ quality-of-service requirements) when it handles the brokering between
the grid and the client. The middleware must also manage data and resources, monitor
jobs, and provide other information services.

A.2 Swegrid and ARC

During the exercises you will get acquainted with a particular grid and a particular
middleware. The abstract discussion in the previous section will thereby turn most
concrete, and thereby lose some of its generality.

The grid we will work with is named Swegrid2. Swegrid is a Swedish national compu-
tational resource, consisting of 600 computers in six clusters at six different sites across
Sweden, and the sites are connected through the high-performance GigaSunet network.
This grid is relatively homogeneous with respect to its nodes and does not allow for
parallel job scheduling across its nodes (clusters).

We will work with an open source middleware named Advanced Resource Connector
(ARC), which is maintained and developed by the NorduGrid Collaboration3. Pre-built
binaries are available for about a dozen Linux distributions and can be downloaded from
the NorduGrid homepage.

We recommend the “Swegrid–User’s guide”4 for an introduction to using Swegrid
with the ARC middleware. This documentation will also be instrumental for the exer-
cises in this course.

A.3 Motivation

The installation of Swegrid was the starting point of a new phase in Swedish High
Performance Computing (HPC). It is not clear what the situation in Swedish HPC will

1http://www.gridcomputing.com
2http://www.swegrid.se
3http://www.nordugrid.org
4http://www.swegrid.se/downloads/swegrid_manual.pdf

NGSSC course on Grid computing 4

be ten years from today, but there is no reason not to believe that grid computing will
play an important role in that future. As a student of the national graduate school in
scientific computing you are likely to be among the users requiring HPC resources in
your future work. The goal of this hands-on sessions of this course is to teach you to
master the grid environment from a user’s perspective in order for you to make the most
out of your scientific applications on the grid.

It may be argued that the lifetime of Swegrid as of today is short, and that the
middleware of coming grid generations may not be ARC. As true as that may be, it is
still our belief that the generic notions will remain and that these exercises serve as an
illustration of some general issues involved with grid computing.

NGSSC course on Grid computing 5

B Notes on the exercises

You can do the exercises on your own or in pairs.
You don’t need to document exercise 1; just reflect carefully on the questions. Feel

free to discuss them with the instructor or other students.
Exercises 2–5 should be documented with code listings, example runs, etc, and

handed in to the instructor, electronically or on paper. Your programs should preferably
also be demonstrated live.

C Notes on the lab environment

Your desktop systems will be Sun SunRay thin clients running the Solaris operating
system. The default language in the desktop environment is Swedish. To get an English
environment instead, select the Options→Language menu on the login screen and choose
the entry en US.ISO8859-1. (You can of course select any language of your choice.)
There is also a choice of two different desktop environments, Gnome and CDE. Choose
whichever you think you will be most comfortable with. You can always change your
selection of desktop environment in the Options→Session menu on the login screen.

The computer labs SU00 and SU01 are reserved for the course all weekdays between
13:00 and 21:00. There are no reservations during the weekend, just grab a free SunRay
in any SU lab.

The actual work will be performed on an NSC system, login-3.monolith.nsc.liu.se.
This machine is accessible from the SunRay system (and from the general Internet) by
ordinary ssh login.

Please note that you have separate account names on the SunRay system and
login-3.

NGSSC course on Grid computing 6

D Exercise 1: Introduction to Nordugrid/Swegrid

and ARC

Acknowledgment: Most of this exercise has been shamelessly stolen from Arto Teräs’
and Juha Lehto’s Nordugrid tutorial.

D.1 Relevant documentation

1. The NorduGrid User Guide
http://www.nordugrid.org/documents/userguide.pdf

2. “Swegrid–User’s guide”
http://www.swegrid.se/downloads/swegrid_manual.pdf.

3. NorduGrid homepage
http://www.nordugrid.org

4. “Learning Python” by Lutz and Ascher, O’Reilly (2003).

5. Python 2.3 Library Reference
http://www.python.org/doc/2.3.4/lib/lib.html

D.2 Authentication and proxies

Once you have acquired a grid certificate and installed the ARC software you are ready
to access the grid. Before doing so, however, you need to be able to authenticate yourself,
a process that is handled with time-limited proxy certificates. The creation of a proxy is
done with the ARC command grid-proxy-init. You will be prompted for a password
that should match the one your private key is encrypted with.

The dictionary definition of the word proxy is “a document giving authority or power
to act for another”. In our case it gives your jobs the authority to act as you on the
grid resources.

In this course we are using temporary certificates signed by a temporary Certificate
Authority, used for this course only. This limits the number of available clusters, as
these tutorial identities and certificates do not belong to any generally authorized Virtual
Organization. Also, the usefulness of the Grid Monitor web interface is somewhat limited
for these tutorial identities.

The certificates and corresponding private keys have already been placed in your
home directory (the files are located in the directory .globus) on login-3. The pass-
word of the private key is “ngssc”.

D.3 Advanced Resource Connector

The grid middleware provides the user with a number of commands to access and in-
teract with the grid. Swegrid is based on the Advanced Resource Connector (ARC)
middleware, and the command names for ARC is given in Table 1. Documentation of
the ARC commands are given via the regular man command.

NGSSC course on Grid computing 7

Table 1: Some of the more important ARC commands.

ngcat ngls ngsync
ngclean ngsub ngrenew
ngcopy ngremove ngtest
ngget ngresub
ngkill ngstat

D.4 Getting started

First of all, log in to login-3 and get a copy of the example files by typing5

$ tar xvzf ~nixon/exercises.tar.gz

The example files for this exercise are located in exercises/ex1.

• Print your certificate in text form by typing grid-cert-info. What is your
identity in the grid? Who has signed the certificate? How long is it valid?

• Logging in to the grid actually means creating a temporary access token called
a “proxy certificate”. Do this by typing grid-proxy-init and specifying the pass-
word of the private key. Print information about your proxy by typing grid-proxy-info.
How long is it valid?

D.5 Submitting a Simple Job

Take a look at the file hellogrid.sh. It is a simple shell script which writes “Hello
Grid” on the standard output and sleeps for a while before returning. You can try to
run it locally by typing

$./hellogrid.sh

The job description file to submit this script to the grid is hellogrid.xrsl:

&(executable=hellogrid.sh)

(stdout=hello.out)

(stderr=hello.err)

(gmlog=gridlog)

(architecture=i686)

(cputime=10)

(memory=32)

(disk=1)

Try to submit the job to NorduGrid:

$ ngsub -f hellogrid.xrsl

This may take a while to complete as the client first contacts the root information
server, asks for clusters connected at the moment and then queries all the available
clusters for their attributes etc. Then it starts preparing a job by transferring the input
files. When the job is submitted, you should receive a message similar to

5The exercises.tar.gz file is also available from the course homepage at http://www.nsc.liu.
se/ngssc-grid-05.

NGSSC course on Grid computing 8

Job submitted with jobid gsiftp://benedict.aau.dk:2811/jobs/2837896291031006429

In this case, the job was submitted to benedict.aau.dk in Denmark and the URL
gsiftp://benedict.aau.dk:2811/jobs/2837896291031006429 is the reference to the
job. (The last part is a session directory chosen randomly by the target system.) It is
possible to check the status of the job using the ngstat command:

$ ngstat gsiftp://benedict.aau.dk:2811/jobs/2837896291031006429

Job gsiftp://benedict.aau.dk:2811/jobs/2837896291031006429

Jobname: hellogrid

Status: FINISHED 2004-03-29 16:15:18

In this case the job has been successfully completed. Other stages that the job may
be in are described in the NorduGrid User Guide. Retrieve the results by typing

$ ngget gsiftp://benedict.aau.dk:2811/jobs/2837896291031006429

This downloads the result files and some statistics in the directory 2837896291031006429.
Take a look at the output (files stdout and stderr and diag file in the gridlog directory.
What can you see?

Note that we made no reference to which cluster the job should go. If you would
like to specify the cluster (or exclude some), it can be described in the xRSL file or on
the command line:

$ ngsub -f hellogrid.xrsl -c datagrid3.csc.fi

• Try submitting the job with the command ngsub -f hellogrid.xrsl -d 1 to
see more information about the submission process. Even more info is available
with -d 2. If a cluster is misbehaving and causing time-outs, the -t option for
specifying a faster time-out is useful.

• Specify a job name by adding the line (jobname=hellogrid your name) to the
file hellogrid.xrsl. Submit the job again. Now you can refer to the job with
the name instead of the job ID when using the ngstat and ngget commands.

• Submit some more jobs and try the commands ngkill and ngclean.

• Specify three alternative clusters as accepted targets in the hellogrid.xrsl file.
Try submitting the job. (Hint: Use the “cluster” attribute, see the User Guide
for details.)

• Add a “notify” attribute in the xRSL file to receive email notifications of job
status changes. See the User Guide for details.

D.6 Monitoring jobs

The command ngstat was introduced in the previous section. Take a look at available
options by typing

$ ngstat -h

NGSSC course on Grid computing 9

The status of jobs can also be seen via the graphical Grid Monitor, which can be
found on the NorduGrid web site http://www.nordugrid.org. Click on the “Grid
Monitor” link at the top of the page.

The main view of the monitor shows currently connected resources. Most of the
elements are links, clicking on them opens a new window giving more information of
that particular resource. For example, click on a cluster name to view more information
about that cluster, on the process bar to view more information about jobs running on
the cluster, and the “All users” icon to view a list of users authorized to run jobs in
NorduGrid.

The jobs belonging to a certain user can be monitored through the Grid Monitor.
To see what kind of information is available, you can for example select the NorduGrid
Virtual Organization (click on the “VOs” icon and then “NorduGrid members”) and
click on the names of the instructors.

• What is the processor type in the Monolith cluster? How much memory is installed
in the nodes?

• Which version of NorduGrid software and which runtime environments are in-
stalled in the Benedict cluster in Denmark?

• On which clusters is the user Balazs Konya (Balazs is a member of the NorduGrid
VO) authorized run jobs?

• Which Storage Elements have more than a terabyte of free disk space?

• Using the “Match yourself” dialog, it is possible to see the amount of resources
available for any user, including the tutorial identities which are not part of Virtual
Organizations. In the “search” dialog, select “Resource/object: User” and click
“Next”. In the first row of the following dialog, select “Name”, “˜” (tilde) and fill
in your name (spelled as in your certificate) in the last field. Then select the types
of resources you want to see on the subsequent rows, for example “Free CPUs”
and “Free disk space”.

D.7 More Examples

Running a real application

This example demonstrates how to run a simple serial computation on the grid. The
application is a first-principles real-space electronic structure program calculating the
electronic structure of the CH4 molecule.6 In this case the (statically linked) executable
is submitted to the grid as one of the job input files and no reference to Runtime
Environments (software packages installed on the target cluster) is required. Basically
we request a single i386 compatible PC. Go to the directory containing the material:

$ cd rspace

$ ls CH4_LUCKY.xrsl

INPUT potentials rspace-0.81_i386-linux_SERIAL

The job description is in the file CH4 LUCKY.xrsl:

6Thanks to Tuomas Torsti for providing the example.

NGSSC course on Grid computing 10

$ cat CH4_LUCKY.xrsl

&(executable=rspace-0.81_i386-linux_SERIAL)

(JobName=CH4_LUCKY)

(inputFiles=(INPUT "")

(potentials/C "")

(potentials/H ""))

(outputFiles=(energies "")

(forces "")

(WAVES_1 "")

(POTENTIAL ""))

(CpuTime=10)

(memory=64)

(disk=10)

(stdout=stdout.txt)

(stderr=stderr.txt)

(gmlog=debugdir)

(|(architecture=i386) (architecture=i686))

The first line defines the name of the executable. If it is not specified in the list
of input files, it is automatically appended to it. Edit the job name from CH4 LUCKY

to CH4 LUCKY YOUR FIRST NAME so you more easily can separate out your job from the
other students’ jobs. Read from the User Guide how the location of the input and
output files is resolved. That can be tricky with all the available access schemes. In the
last lines some of the requirements for the job are specified, so that the client can select
a suitable resource.

Submit the job!

$ ngsub -f CH4_LUCKY.xrsl

INPUT->INPUT 1 s: 0 kB 0 kB/s 0 kB/s ...

rspace-0.81_i386-linux_SERIAL->rspace-0.81_i386-linux_SERIAL 1 s: ...

rspace-0.81_i386-linux_SERIAL->rspace-0.81_i386-linux_SERIAL 2 s: ...

C->C 1 s: 0 kB 0 kB/s 0 kB/s ...

C->C 2 s: 64 kB 31 kB/s 32 kB/s ...

H->H 1 s: 0 kB 0 kB/s 0 kB/s ...

Job submitted with jobid gsiftp://ingvar.nsc.liu.se:2811/jobs/7009965451436415513

Monitor the job with ngstat and when it is finished, fetch the results7 with ngget.
The default time that the output files are kept on the remote site is 24 hours. In practice
one would like to transfer the results back to some storage server (Storage Element, SE)
automatically after the completion of the job. That’s achieved by specifying the target
location in the xRSL file. The files can then be moved between different SEs using for
example ngcopy (see the User Guide for details). Interactive FTP clients with Grid
authentication are also available.

• A Storage Element is available at storage2.bluesmoke.nsc.liu.se. Log in
to the storage element by typing gsincftp storage2.bluesmoke.nsc.liu.se

and create a directory named se3/ngssc/ your name there. Then modify the
CH4 LUCKY.xrsl file so that the output files are uploaded to the storage element
(again, see the User Guide for details). Submit the job using ngsub and fetch
results using ngget when it is completed. Now ngget should only fetch log files,

7These may or may not be intelligible, depending on whether you are a quantum physicist or not.

NGSSC course on Grid computing 11

standard output and standard error. Log in to the storage element again to get
the actual result files.

NGSSC course on Grid computing 12

E Exercise 2: Python programming on the grid

E.1 Relevant documentation

1. “Swegrid–User’s guide”
http://www.swegrid.se/downloads/swegrid_manual.pdf.

2. The NorduGrid User Guide
http://www.nordugrid.org/documents/userguide.pdf

3. “Learning Python” by Lutz and Ascher, O’Reilly (2003).

4. Python 2.3 Library Reference
http://www.python.org/doc/2.3.4/lib/lib.html

E.2 Monte Carlo integration

To get a suitable problem to work with, we will look at using Monte Carlo to evaluate
definite integrals. Suppose we wish to evaluate the integral

I =
∫ b

a
g(x)dx, (1)

where a and b are the limits of integration. If we introduce a bounding box that encloses
the function g(x), then the integral of g(x) can be understood to be the fraction of the
bounding box that is also within g(x). So if we choose a point at random (uniform
distribution) within the bounding box, the probability that the point is within g(x) is
given by the fraction of the area that g(x) occupies. The integration scheme is then to
generate a large number of random points inside the box and count the number that
are within g(x) to get the area

I ≈ n∗

n
V (2)

where n∗ is the number of points within g(x), n is the total number of points generated,
and V is the generalized volume (depending on the dimension of the problem at hand)
of the bounding box.

This method is very inefficient, many points are required for Eq. (2) to converge
toward the true value of I with any degree of precision.

We will consider an alternative approach. It will be presented in the one-dimensional
case, although its real use is in multi-dimensional cases, to which it can easily be ex-
tended.

We can get an approximation of I by adding together the areas of n boxes, where
the width of each box is (b−a)/n and the height of a box is g(xi), where xi is a random
value such that xi ∈ [a, b], i.e.

I ≈
n∑

i=1

b− a

n
g(xi). (3)

It can be shown that estimates based on Eq. (3) converge toward the actual solution
as 1/

√
n, if the sample points are selected uniformly randomly.

NGSSC course on Grid computing 13

E.2.1 Side note: quasi-random numbers

If uniformly distributed random numbers are used for the Monte Carlo evaluation of
integrals then, because of the clumps and voids in any given sample, there will be
regions of the integral that are under- as well as over-represented. In the long run it is
not a problem since we know that the numbers represent a uniform distribution well.
But “long run” means using lots of iterations.

To improve the situation we can try to pick sample points that fill the interval in
a more uniform way and don’t form clumps and voids along the way. Such number
sequences are called “quasi-random” or “maximally avoiding” sequences. (Since the
numbers in the sequence are no longer uncorrelated, they are technically not random at
all.)

Using quasi-random numbers for choosing the points will cause the integration esti-
mate to converge like [log n]N/n (where N is the number of dimensions in the integral).
This improved convergence is considerably better, almost as fast as 1/n.

E.3 Exercises

1. Write a Python program called integral.py that can evaluate one-dimensional
integrals, using the method in Eq. (3). The program should be controlled with an
input file that specifies the number of iteration points, integration limits, and g(x)
(expressed in Python).

There are basically two ways to get the information from the input file; either
you can read the file with ordinary Python file I/O functions and use the eval()

function to evaluate g(x), or you can treat the input file as a Python module and
import it. Both methods have their (dis)advantages. Be prepared to motivate
your choice.

Using uniformly distributed random numbers from the random module to select
the sample points is fine. Optionally—if you feel ambitious—you can track down
an algorithm for generating quasi-random numbers and implement it in Python.

The output of the program should contain (i) the final result of integration, (ii)
timing statistics (Hint: look up the function os.times().), and (iii) convergence
control. As a rough measure of convergence, we can check the relative change of
the estimated integral value during the last 100 iterations:

Rn =
In − In−100

In

(4)

2. Submit a grid job that uses the program to evaluate the integral8

I =
∫ π

0

x sin x

1 + cos2 x
dx. (5)

Your job should request the runtime environment PYTHON of version 2.3 or higher.

3. Write a Python program that submits the grid job ten times with different n.
This means you will have to run ngsub from within your program. Consider the
os.system() and commands.getstatusoutput() functions. Also look up the -o

option to ngsub and think about how that can be useful. Plot the convergence of
the integration with respect to n.

8The analytical value is π2/4.

NGSSC course on Grid computing 14

F Exercise 3: Program package development

F.1 Relevant documentation

1. “Swegrid–User’s guide”
http://www.swegrid.se/downloads/swegrid_manual.pdf.

2. “Learning Python” by Lutz and Ascher, O’Reilly (2003).

3. Python 2.3 Library Reference
http://www.python.org/doc/2.3.4/lib/lib.html

F.2 Runtime environments and Program packages

Scientific computing is performed in projects concerned with research and development.
The ultimate aim of the computation is to relate theoretical models to the development
of advanced products or functional materials or to the understanding of complex inter-
actions. Some applications fall into relatively broad categories whereas others are more
specific in nature. In the former situation it is not uncommon that there are pre-existing
program packages that are quite generic and can be utilized by a large number of sci-
entist working on different projects; one example would be given by software available
for the simulation of the dynamics of fluids. The software can be effectively adapted
to specific applications by the control of user input, and there is typically no need for
re-compilations inbetween different application runs. If this is the case, the most effi-
cient use of the grid resource is to pre-compile the software and either include the binary
executable in the job request or to pre-install the software on the grid resource. There
are several general purpose software packages that are pre-installed on Swegrid, and the
user can access these by the request of a certain runtime environment.

In the opposite situation, however, the situation may be characterized by specific
software design and frequent software modification and on-going development. The use
of pre-compiled binaries may be hampered by the inhomogeneity of the grid, and it may
be necessary to use the allocated resource to first compile the program that is intended
to be run in the application.

This exercise is intended to illustrate the latter situation, and give practice on how
to perform runtime compilation in a convenient manner. We will first look at the well-
known random walk problem in physics in order to have something to work with in the
exercise.

F.3 Random walk problem

A random process consisting of a sequence of discrete steps of fixed length is known
as a random walk. The random thermal perturbations in a liquid are responsible for a
random walk phenomenon known as Brownian motion, and the collisions of molecules
in a gas are a random walk responsible for diffusion. Random walks have interesting
mathematical properties that vary greatly depending on the dimension in which the
walk occurs and whether or not they are confined to a lattice.

In a plane, consider a sum of N two-dimensional vectors with random orientations.
Use phasor notation, and let the phase of each vector be random. Assume that N unit
steps are taken in an arbitrary direction, i.e., with the angle that is uniformly distributed
(and opposed to the case of a lattice), as illustrated above. The position z in the complex

NGSSC course on Grid computing 15

Figure 1: Illustration of random walk with unit step length and arbitrary direction. The
angle distribution in the steps is uniform between [0, 2π[.

plane after N steps is then given by

z =
N∑

j=1

eiθj . (6)

If we perform a large number of random walks, all starting at the origin, we would be
interested in the mean distance from the origin after N steps. It is straightforward to
show that the mean absolute square becomes〈

|z|2
〉

= N. (7)

With a step size l (corresponding to the mean free path in diffusion), we can determine
the number of steps needed to travel a distance d:

N =

(
d

l

)2

. (8)

F.4 The make utility program

When the source code of a program is split into multiple files, it is convenient to use
the make utility program. The make command will look for a file named Makefile in
order to find directives for the compilation of your program—make will automatically
check the timestamps on the involved files and keep track of whether each file needs
to be re-compiled or not, a feature that is most beneficial when working with a large
number of source code files. A file random-walk.c9, which contains C source code, can
be compiled with use of the following Makefile by simply typing make at the command
prompt10. Executing make clean will clean up your directory from temporary files such
as the object code.

9The source code of this program is given in the Appendix
10Lines beginning with # are comments. Lines 8, 19 and 22 begin with tabs. It has to be tab

characters, not space characters. This syntactic silliness is probably the greatest single source of
compilation errors in the history of Unix.

NGSSC course on Grid computing 16

01:#

02:# Makefile for random walk program

03:#

04:all: random-walk

05:#

06:.SUFFIXES: .o .c

07:.c.o:

08: $(CC) $(CFLAGS) -c $*.c

09:#

10:CC = gcc

11:RM = rm -f

12:CFLAGS = -O3

13:LIBS = -lm

14:#

15:SRC = random-walk.c

16:OBJ = random-walk.o

17:#

18:random-walk: $(OBJ)

19: $(CC) $(CFLAGS) -o random-walk $(OBJ) $(LIBS)

20:#

21:clean:

22: $(RM) -f *.o *~

23:#

24:# End of Makefile

25:#

This Makefile is actually overly verbose. Most of these rules and specifications are
already present as built-in defaults in make, but are included here for purposes of illus-
tration.

Both Makefile and random-walk.c are available in your exercises/ex3 directory.

F.5 Exercises

1. Create a gzipped archive file that contains the Makefile and the source code file
random-walk.c. The tarball will function as our “program package”. Write a
script (in, for example, Python or sh) that is to be submitted to the grid and that
will unpack and compile the “program package”, and then run the application.

2. Modify the source code by changing the number of iterations. Record in a plot
the convergence of the distance with respect to the number of iterations. How
many iterations are required to converge the printed distances to within 0.1% of
the theoretical values?

3. In many cases the Intel C compiler, icc, produces faster code than the GNU
compiler, gcc. However, icc is not available on all systems. Modify your script so
that it tries to find icc on the target system. If icc is available, override the value
of CC in the Makefile to use icc for compiling the program instead11.

11Check the make manual (do “info make”) for details.

NGSSC course on Grid computing 17

G Exercise 4: Job scheduler

G.1 Relevant documentation

1. “Swegrid–User’s guide”
http://www.swegrid.se/downloads/swegrid_manual.pdf.

2. “Learning Python” by Lutz and Ascher, O’Reilly (2003).

3. Python 2.3 Library Reference
http://www.python.org/doc/2.3.4/lib/lib.html

G.2 Scheduling of large number of tasks with distributed con-
trol

A computational scientist frequently needs to perform a large number of calculations
using an identical application software with varying input files. In principle, this is an
ideal situation for grid usage, since the future vision of the grid is that of a supplier
of a large number of compute units that today are used inefficiently. The issue of grid
inhomogeneity and binary executables was discussed in the previous exercise, but there
are other questions that need to be addressed. For example, one other complication
that is caused by the inhomogeneity is the difficulty of pre-estimating the number of
required CPU seconds.

In this exercise, however, we will focus on how to create a convenient interface for the
grid user to run a large number of similar jobs. The straightforward way is to construct
all the necessary input files and submit the jobs with a script. The disadvantage with
this solution is that, by the time the jobs are submitted, there is no possibility for the
further modifications of the job specifications. The user is also responsible for checking
the completion of individual jobs and to re-submit unsuccessful calculations.

Figure 2: Scheduling of jobs.

Our strategy for scheduling of jobs is illustrated in Figure 2. The grid user does not
stand in direct contact with the grid compute units—this contact is performed by the
broker. However, both the grid compute units and the grid user stand in contact with a
scheduling server, and the grid user can choose to communicate with the compute units
via this scheduling server also after the jobs are submitted to the broker and even while

NGSSC course on Grid computing 18

the job is running on the compute unit. The scheduling server will maintain a task list
from which the compute unit requests a task specification and reports the status of the
task taken.

The problem remains what form the communication between the jobs and the sched-
uler should take. One could imagine the scheduler to be simply a gridftp server, contain-
ing a file with task specifications, that the jobs download and pick the first unclaimed
task from. However, that approach has problems of both a practical nature and a more
theoretical, fundamental nature. Among the former problems is that (in ARC) jobs
have no access to the user’s proxy certificate once they have started executing on a
compute node. Thus they cannot access a gridftp server as the user12. Additionally,
there is no guarantee that the compute node even has any ARC software installed, so
we do not know whether the job will have access to a gridftp client program. A graver
problem is the race condition inherent in this tentative solution—there is no mechanism
to stop several jobs from downloading the task specification simultaneously so that they
all choose the same task.

It is obvious that this initial stab at a solution is insufficient; we will need something
a bit more elaborate. Fortunately, Python comes with built-in support for an remote
procedure call (RPC) standard called XMLRPC, which makes it very easy to write
simple client-server systems. For example, Figures 3 and 4 show how write an XMLRPC
server that provides a single function add that takes two arguments and return their
sum, and a client that calls the function.

#! /usr/bin/env python

from SimpleXMLRPCServer import SimpleXMLRPCServer

def add(x, y):

return x+y

server = SimpleXMLRPCServer(("", 8000))

server.register_function(add)

server.serve_forever()

Figure 3: server.py

#! /usr/bin/env python

import xmlrpclib

server = xmlrpclib.ServerProxy("http://localhost:8000")

print "The sum of 2 and 3 is", server.add(2, 3)

Figure 4: client.py

Using the XMLRPC tools it is relatively easy to write a scheduling server and cor-
responding client. However, there are some traps waiting for the unwary student.

12All such transactions are performed during the stage-in and stage-out phases, before and after the
actual execution of the job.

NGSSC course on Grid computing 19

Security

Remember that your server will be exposed to the entire Internet, and that there are
bad, bad things out there. The client that connects to your server might not be your
own well-behaved program.

We would like to be able to use the grid security infrastructure, GSI, and thereby
get major parts of the security problem solved automatically, but that is currently not
possible since, as mentioned previously, ARC grid jobs do not have access to the proxy
certificate. Furthermore, the XMLRPC client in the Python standard library does not
support GSI (but there are alternative implementations that do).

We will have to make do anyway. Please keep security in mind at all times. At the
very least, incorporate a password argument in your function calls; that stops some of
the most trivial attacks.

Port numbers

The XMLRPC server listens for connections on a specific port number, which is specified
in the call to the SimpleXMLRPCServer constructor function. If you tell your server to
listen on port 8000, your client should connect to the URL http://login-3.monolith.

nsc.liu.se:8000. The port numbers that are available for user programs are 1024–
65535.

To avoid clashes, each student have been assigned a port number range. Please pick
port numbers within that range.

Under certain circumstances, the port13 will remain reserved by the system for several
minutes after the server process has exited (it is said to be in a TIME WAIT state).
If you try to reuse the port within that time period you will get an “address in use”
error. This is to ensure that all connections to the old process are properly terminated
before a new process can listen on the same port, which is normally an excellent idea.
However, in a development situation, where you need to restart the server frequently,
this can be irritating.

To avoid the TIME WAIT state, you can tell the system that the port can be
reused immediately. The simplest way is to subclass SimpleXMLRPCServer and set
allow reuse address to a true value in the subclass (see Figure 5). (Technically, this
specifies that the network socket should be created with the SO REUSEADDR option
set.)

from SimpleXMLRPCServer import SimpleXMLRPCServer

class MyXMLRPCServer(SimpleXMLRPCServer):

allow_reuse_address = 1

server = MyXMLRPCServer(("", 8000))

...and so on...

Figure 5: Reusing port numbers

13Actually, it is the combination of network address and port number which is reserved.

NGSSC course on Grid computing 20

Compute node connectivity

In general, the compute node that a grid job runs on might not be directly connected
to the Internet. However, there is an xRSL attribute called “nodeAccess” that you can
use to request nodes with outbound and/or inbound Internet connection. See the xRSL
manual for details.

G.3 Exercises

1. Write a Python script that is to be submitted to the grid N times, where N is
larger than the number of jobs that is to be completed (if some jobs needs to be
re-calculated). We thus submit an identical script multiple times.

When the script is executed on a compute unit, it should contact the scheduling
server and find the first task that has “to-do” status. It should mark the task
as “taken” and construct the appropriate input file for the program integral.py

from the first exercise. When the job has successfully completed it should mark
the task as “done” and give the value of the integral.

If a task is not “done” within a reasonable timespan from when it was “taken”,
it is considered to have failed, and should once again be marked “to-do”. To test
this feature, you might want to introduce something like
if random.random() > 0.5: sys.exit(1)

into the client to make a certain proportion of the jobs fail.

The list of tasks should contain the integrals:

In =
∫ 10

0

1

1 + xn
dx, n = {1, . . . , 10}. (9)

NGSSC course on Grid computing 21

H Exercise 5: Watchdog

H.1 Relevant documentation

1. “Swegrid–User’s guide”
http://www.swegrid.se/downloads/swegrid_manual.pdf.

2. “Learning Python” by Lutz and Ascher, O’Reilly (2003).

3. Python 2.3 Library Reference
http://www.python.org/doc/2.3.4/lib/lib.html

H.2 Scheduling of large number of tasks with local control

In this exercise we will return to the issue of scheduling a large number of jobs. We
discussed this issue in the previous section, but let us now choose a different perspective.
This time we will focus on the tedious work of supervising grid calculations and retrieving
the final results. If you run hundreds of calculations in a project you are likely not to be
pleased by the situation of having to collect result files on an individual basis, or even
to check for their completion. When run on a local resource, this management is easy
since the output of the application is directly visible in your local directory, but, when
run on a grid resource, the whole thing is a bit more cumbersome.

Figure 6: Scheduling of jobs with a watchdog program.

Let us improve on this situation by creating a watchdog program that will supervise
our calculations. In this case we envisage that we have prepared input files [*.inp] in
a local directory, and we desire to, with a minimum a manual labor, successfully run
the application for these input files and leave the corresponding output files [*.out] in
the same directory.

H.3 Exercises

1. Write a Python program watchdog.py that, as an argument, takes the name of
an xRSL file. The program should submit the job to the grid, and keep watch
of the status of the job. When the job has successfully completed the output file
should be downloaded from the grid resource and placed in the same directory
as the input file. If the calculations failed, the program should save the standard
error message and place this file in the same directory. Other files are not to be
kept.

NGSSC course on Grid computing 22

The program should not call ngstat more often than once a minute, to avoid
unnecessary load on the computing resource.

2. Modify your program to take an arbitrary number of xRSL files and track the jobs
in the same way as above.

Again, you should not run ngstat towards any given resource more than once a
minute. Of course, if the jobs end up on n resources, you can run n ngstat calls
per minute—one for each resource.

NGSSC course on Grid computing 23

I Appendix: A basic random walk program

/* random walk simulation */

#include <stdio.h>

#include <stdlib.h>

#define NumberIter 10 /* number of walks */

#define NumberSteps 10*100 /* number of steps per walk */

#define pi 3.14159265358979

FILE *output;

main()

{

int i,j;

double x, y, random_angle;

double xsum[NumberSteps+1],ysum[NumberSteps+1], rsum[NumberSteps+1];

output= fopen ("walk.out", "w");

srand((unsigned)time(NULL));

for (i=0; i<=NumberSteps; i++)

{

rsum[i]=0; xsum[i]=0; ysum[i]=0;

}

for (j=1; j<=NumberIter; j++) /* average over walks */

{

x=0; y=0; /* start walk */

for (i=1;i<=NumberSteps; i++)

{

random_angle = 2*pi*(double)rand()/(double)RAND_MAX;

x += sin(random_angle);

y += cos(random_angle);

xsum[i] += x;

ysum[i] += y;

rsum[i] += x*x+y*y;

}

}

/* write results into file */

for (i=0; i<=NumberSteps/100; i++)

{

fprintf(output,"%i\t%f\t%f\t%f\n", i*100,

rsum[i*100]/(double)NumberIter,

xsum[i*100]/(double)NumberIter,

ysum[i*100]/(double)NumberIter);

}

fclose (output);

}

