Virtualization

A very short summary by Owen Synge

Outline

- What is Virtulization?
 - What's virtulization good for?
 - What's virtualisation bad for?
- We had a workshop.
 - What was presented?
 - What did we do with the rest of our time?
- So whats happened since?
- Collaboration and progress.

What is virtualization?

- from Enterprise Management Associates:
 - technique for hiding physical characteristics of computing resources from the way in which other systems, applications, or end users interact with those resources.
 - making a single physical resource appear to function as multiple logical resources.
 - making multiple physical resources appear as a single logical resource.

Yves Kemp found this was like Gid for his GrudKa talk on grid virtualisation

Whats Virtualization Good for?

- Consolidating services (Not todays talk)
- Test systems (Quickly)
 - Build Nodes
 - Deployment testing
- Security / Management (Main Focus of Today)
 Isolation of concerns
- Scheduling (Maybe if Time)
 - Better management of resources

What Virtualizations Bad For ?

- Depends on implementation.
 - Xen
 - Latency
 - (MPI on the worker node may not be ready need more specs)
 - UML
 - Disk/Network IO
 - Vserver/Chroot
 - Isolation
 - Security
- Clear Xen is Currently most popular amongst the HEP community.

We had a workshop at DESY

- 16-17 January 2007
- Bias toward LCG
- 70:30 ratio of Presentations:Group.
- Attendants
 - System administrators dominate
 - wLCG deployment team
 - Solution Providers / Users
- Group Session
 - Many Admins and deployment experts

Presentations

- Deployment
 - Trinity Collage Dublin (Irland)
 - CERN (Swis)
 - DESY (Germany)

- Worker Nodes
 - Metacenter (Czech)
 - Karlsruhe (Germany)
 - Luebeck (Germany)
 - Globus (USA)
 - Masaryk (Czech)

Virtualization Users workshop Group Discussion

- Focused just on worker Node
- 5 models compared.
 (1)Persistent VM 1 OS
 (2)Persistent Vm Many OS
 (3)Non Persistent VM's
 (4)Non Persistent VM's OS Library
 (5)Non Persistent VM Dynamic OS
- Root on the worker node

One persistent virtual machine with a single OS images.

Benefit

- Job is isolated from man. operating system
- Security of base OS image
- Possibly use able to suspend jobs
- Consistent DOM0 image (No user access)
- Easy to restore images/Maintain
- Eases hardware abstraction (SL3/SL4 EXAMPLE)
- Technology is already available.

Cost

- Performance (Slight)
- Maintenance of Two OS's
- Lots of different systems used need to learn how to integrate them
- management tools are not available.

Multiple/2 persistent virtual machines with multiple/2 OS's.

- Benefit
 - Useful for parallel Jobs and back filling
 - Increasing cluster utilization when queue draining would normally be required
 - Job is isolated from management operating system
 - Security of base OS image
 - Possibly use able to suspend jobs
 - Consistent DOM0 image (No user access)
 - Easy to restore images/Maintain

Cost

- Performance (Slight)
- Maintenance of Two OS's
- Lots of different systems used need to learn how to integrate them
- management tools are not available.
- Memory is not shared so does not scale to N images.

Running non persistent virtual machine images.

Benefit

- Security is greatly enhanced
 - Worker node cleaning and job deamoization fears are eliminated
- We believe Minimal modification to batch system required as job submission epilogue and prologue can hide virtual machines details.
- We believe that non persistent virtual machines will be the future of the worker node
- Memory available to a job is clearly split so providing better job isolation.

• Cost

- Cost of restarting Virtual machines.
- Virtual machines is not just a process, its a set of requests to hypervisor from schedulers perspective.
- An Adapter will be needed.
- Batch system needs information on CPU used ability for stopping VM's from scheduler work
- Memory issues may cause problems as clearly split.
- Logging issues, will we be able to store logs without further development.

Running non persistent virtual machine images.

Benefit

- Security is greatly enhanced
 - Worker node cleaning and job deamoization fears are eliminated
- We believe Minimal modification to batch system required as job submission epilogue and prologue can hide virtual machines details.
- We believe that non persistent virtual machines will be the future of the worker node
- Memory available to a job is clearly split so providing better job isolation.

• Cost

- Cost of restarting Virtual machines.
- Virtual machines is not just a process, its a set of requests to hypervisor from schedulers perspective.
- An Adapter will be needed.
- Batch system needs information on CPU used ability for stopping VM's from scheduler work
- Memory issues may cause problems as clearly split.
- Logging issues, will we be able to store logs without further development.

Non persistent virtual machines image from a library of images.

- Benefits
 - Great flexibility of run time environment
 - Multiple environments
 - Security
 - No need to balance resources.
 - Experiments don't have to agree on SL3/4
 - All benefits shown for other models.

Cost

- Additional integration with VM and batch system
- Information System changes.
- JDL should describe Image to be used.
- CE needs all of JDL information, unfortunately this is lost in current LCG grid.
- Scheduler has needs to be greater aware of VM
- Concerns over batch system Independence.
- We would not get all batch systems integrated before OFFICIAL switch on even with dedicated funding.

User defined images running on non persistent virtual machines.

- Benefits
 - Experiments don't have to agree on SL3/4
 - All benefits shown for other models.

Cost

- New infrastructure needed
- Need to define Image generation
- User supplied images may scare admins

Globus Virtual Workspaces Summary

- Web service controlling VM
 - Model 5
- PBS plugins
- rpath based deployment
- Starting with production deployments
 - STAR community
 - Cliemate Community (CCSM)

Simon Fraser University

- Virtualized serial jobs
- Native MPI jobs
 - Due to xen latency / bandwidth issues issues
- Implementation
 - Solaris Xen management domain
 - Torque >= 2.0 + MOAB >= 5.0
 - Migration to production of 2000 nodes by March

University of Magdiburg

- Model 5 Worker nodes
 - User defined per job VM's
- Click and build Image
 - Debian and Ubuntu based images
- Supporting Torque Batch Queue
 - Planning to support Sun Grid Engine
- Research project only.

CERN's Glite testing frame work

- In production
- For sumulating grids
 - For testing deployment
 - Basis of Certification for Glite CERN
 - For training perposes
- Uses Cluster management techniques
- Web interface

Trinity Collage Dublin

- Simulates Grid Irland
 - Used to deploy nodes before shipping to site
- Provides full Quattor cluster management
- pygrub
 - pxeBoot mechanism for VM
 - management of master OS
 - Can then use existing boot env

Desy Build and development

- xen-image-manager.py
 - 45 seconds to reinstall an OS and boot it
 - Going on source forge in next few days.
- Build service
 - Not yet ported to SL4
- Vm based
 - Development hosts
 - Release management / Certification
- XEN SL5 + AFS plus pygrub going int production for service consolidation

- We believe Virtualization will be adopted on the worker node
 - in an incremental fashion
 - Both Karlsruhe and the MetaCentre
 - have already reached beyond the simplest model of a persistent virtual image, due to local demands on resources.
- Non persistent virtual machines image from a library of images.
 - No more needed for wLHC at moment.

- We expect that sites will adopt Virtualization in stages due to the benefits of abstracting the hardware from the operating system.
 - Experiments wanting to use older OS.
 - Site specific differences in deployment
 - easing use of the Grid for the scientific community.

- Eg French or German version of Perl

- Root on the worker node possible but not keen.
 - Insecure network services.
 - Poor practice would become established.

- The LHC computing community demands that all users use a consistent operating system.
 - Challenged as we upgrade from SL 3 -> 4.
 - Not all grid user communities happy with OS driven centrally.
- Resolved by running within virtual machines.
 - New potential grid communities who may have standardized on other operating system environments.

- The benefits of running non persistent VM's.
 - Takes about 45 seconds.
 - xen-image-manger.py
 - The Virtual host is reinstalled per job.
 - Management and security Advantages.
- Many members of the workshop believe that this is the compelling reason for running virtual machines.

 The grid will ultimately demand a heterogeneous model of OS's.

- Virtualization seems a way to mange this.

- We expect that there will be some opposition to immediate adoption of Virtualization
 - communities who typically have a performance focus and low security requirements.
 - Inter VM Latency concerns

- Usage of VM will evolve and change as these technologies are still young in the commodity computing sector.
- Still need integration between batch queue and VM.
- Worker nodes will all be a VM in next 5 years
 - Near unanimous perspective.