Hierarchic Data Structures for Sparse Matrix Representation in Large-scale DFT/HF Calculations

Paweł Sałek
Theoretical Chemistry, KTH, Stockholm

16-18 October 2007, Linköping
Talk Outline

- Running large-scale ab-initio calculations – scaling.
- Solving problems with sparse matrices.
- OpenMP parallelization – problems.
Performance of the SCF Cycle

- Computation of Kohn-Sham matrix F is time-consuming.
- For really large systems, density evaluation ($F \rightarrow D$) is time-consuming as well.
- Matrix memory usage grows quadratically.
- Local basis set – basis functions localized on atoms.
Elias Rudberg: Interaction evaluation (PhD in December).
Emanuel Rubensson: Sparse matrices.
Density traditionally obtained via diagonalization and \textit{aufbau} principle:

\[FC = \epsilon SC \quad D = C_{occ} C_{occ}^T \]

- Diagonalization does not scale linearly.
- Density optimization and purification algorithms scale linearly when sparsity is used.
Matrices are used to represent operators D and F.

Overlap matrix, Density matrix, Fock Matrix, Kohn-Sham matrix.

Matrices must be represented in such a way that common operations are fast.

Sparsity appears only for larger molecules (> 50 atoms).
Matrix sparsity depends on the basis set and geometry and to some extend on the band gap.
Taking Advantage of Sparsity Patterns

- Sparsity appears in blocks.
- Reorder atoms to merge the atom blocks in larger ones.
- Use BLAS for operations on blocks and Compressed-Sparse Row (CSR) format for block storage.
- Enforce sparsity by small element truncation.
F → D Step With Sparse Matrices

- Use Trace-Correcting Purification – a series of spectral transformations.
- Performance limited by the sparse matrix multiplication speed.

```latex
compute P = (l_{\text{max}} I - F) / (l_{\text{max}} - l_{\text{min}})
while abs(trace(P) - N) > threshold
    if (trace(P) > N) then
        P := P * P
    else
        P := 2 * P - P * P
end while
```

\[f_1(x) = x_n \]
\[f_2(x) = 2x_n - x_n^2 \]
Example TC2 Application

Glycine Molecule

Eigenvalues

Accumulated error

Idempotency error

Share of nonzero elements
Problems with TC2

- Number of TC2 iterations depends the bandgap.
- Control the error: TC2 error grows exponentially with the number of iterations.
- More flexible representation than Compressed Sparse Row is needed for easy implementation of other algorithms.
Error introduced by truncation of small elements.

First approaches considered only distance between atoms and empirical threshold factors – unreliable!

More advanced approaches look at the norms of neglected blocks – more reliable but strict error control still impossible.

SSSA looks at the error of the entire matrix. Provides strict error control.
The Effect of SSSA on Total Energy Error

Benchmark on water clusters with Hartree-Fock and STO-3G. alg. 1: threshold based filtering, alg. 2: SSSA.

SSSA provides rigorous error control. → Saves time and gives trustworthy results. Energy extrapolation possible.
Hierarchic Matrix Library (C++)

HML allows for low-overhead random element access.

typedef Matrix<Matrix<Matrix<double> > > MyMatrixType;
typedef Matrix<Matrix<Matrix<long double> > > MyAccurateMatrixType;
HML Features

- Easy to code and maintain.
- Block size determined by the architecture performance, not chemistry.
- Low overhead random element access.
- Blocked algorithms easy to express:
 1. Matrix multiplication, also by transposed matrices.
 2. Use of matrix symmetry.
 3. INverse CHolesky factorisation (INCH).
Block Size Tradeoff

- Smaller block size \rightarrow more opportunity for screening.
- Larger block size \rightarrow better block-block multiplication performance.
Example Implementation of $C := \beta C + A^*B$

```cpp
static void multiply(const Matrix<Telement>& A,
                     const Matrix<Telement>& B,
                     Matrix<Telement>& C, double beta) {
    for (int colC = 0; colC < C.ncols; colC++)
        for (int rowC = 0; rowC < C.nrows; rowC++) {
            Telement::multiply(A(rowC, 0), B(0, colC),
                                C(rowC, colC), beta);
            for (int colA = 1; colA < A.ncols; colA++)
                Telement::multiply(A(rowC, colA), B(colA, colC),
                                    C(rowC, colC), 1);
        }
}
```

- Lowest level (block) multiplication expressed in terms of BLAS calls.
- Template expansion will generate (\textit{instantiate}) code for all the remaining hierarchy levels.
HML design allows for easy implementation of symmetric matrix multiplication (sysq: \(S = \alpha T^2 + \beta S \)) as needed by TC2:

- sysq twice faster than general sparse multiplications.
OpenMP Parallelization

- Parallel programs necessary to efficiently use modern multi-core hardware.
- OpenMP less *invasive* and easier to load-balance.
- Problems with scaling and... compiler support.
- Poor compiler support! GNU gcc is the only reliable, OpenMP-enabled compiler known to us so far.
Details of OpenMP Parallelization

- Pick a level in the hierarchy, run a parallel loop with dynamic scheduling over it.
- Approach trivial to implement.
- Higher levels: coarse load distribution.
- Lower levels: thread startup overhead.
Exceptions and OpenMP

- OpenMP and C++ exceptions do interact.
- Threads must catch any exceptions that are generated. The behavior is undefined otherwise.
- We do the right thing (in case you ask).

```c
#pragma omp parallel for
for (int i = 0; i < MAX; i++) {
  try {
    // Heavy lifting here
  } catch (...) { /* Handle it nicely. */ }
}
```
Compiler Problems

GNU C++ OpenMP support since 4.1(?). No problems found. Sequential performance lower than its competitors.

Portland C++ fairly warns that it cannot handle exceptions and OpenMP at the same time. A honest warning but...

Intel C++ 3 versions tried. All of them had bugs either in sequential code or in OpenMP parallelization. 8.1 fails to generate correct sequential code; miscompiles OpenMP code as well. 9.1 works sequentially; compiler crashes with executed with -openmp flag. 10.0 fails to generate correct sequential code. Support tickets with Intel are open.
OpenMP Speedup

- Timings taken on 1.5GHz Itanium2, 4 CPU (luc2, PDC), 4 threads.
- Glycine-Alanine chain with 1600+ atoms, HF method. GNU C++.

<table>
<thead>
<tr>
<th>Operation</th>
<th>CPU time [s]</th>
<th>Wall time [s]</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDS-SDF</td>
<td>133.54</td>
<td>53</td>
<td>2.66</td>
</tr>
<tr>
<td>Purification</td>
<td>947.59</td>
<td>454</td>
<td>2.13</td>
</tr>
</tbody>
</table>

- Acceptable multiplication load balancing (3.5/4.0) but serial data management has negative impact on scalability.
- Additionally, purification involves serial error estimation routines.
SSSA – for strict error control.

HML – flexible sparse matrix representation.

A number of algorithms (arbitrary MxM multiplications, inverse Cholesky factorisation) already implemented.

OpenMP parallelization.

OUTLOOK

Analyse the sparsity in the QM methods beyond the algorithms relevant for SCF: Linear response for calculation of molecular properties.
Small Submatrix Selection Algorithm (SSSA)

Given a matrix norm $\| \cdot \|$ and an error limit ε we want to find a sparse approximation \tilde{A} of A so that $\|A - \tilde{A}\| < \varepsilon$.

SSSA:

1. Compute the Frobenius norm of each submatrix.
2. Sort the values in descending order.
3. Remove submatrices from the end as long as the error is within desired accuracy.

\implies Error very close to the requested value in the Frobenius norm.