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Talk Outline

Running large-scale ab-initio calculations – scaling.

Solving problems with sparse matrices.

OpenMP parallelization – problems.
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Performance of the SCF Cycle

Computation of Kohn-Sham
matrix F is time-consuming.

For really large systems, density
evaluation (F → D) is
time-consuming as well.

Matrix memory usage grows
quadratically.

Local basis set – basis functions
localized on atoms.

Get starting
 guess D0

compute F(n) = F(D)

find D(n+1)=D(F)

D((n+1) = D(n)

no

converged

yes
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Research Group

Elias Rudberg: Interaction evaluation (PhD in December).

Emanuel Rubensson: Sparse matrices.
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F → D Step

Density traditionally obtained via diagonalization and aufbau
principle:

FC = εSC D = CoccC
T
occ

Diagonalization does not scale linearly.

Density optimization and purification algorithms scale
linearly when sparsity is used.
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Sparse Matrices in Quantum Chemistry

Matrices are used to represent operators D and F .

Overlap matrix, Density matrix, Fock Matrix, Kohn-Sham
matrix.

Matrices must be represented in such a way that common
operations are fast.

Sparsity appears only for larger molecules (> 50 atoms).
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Sparsity Patterns
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Matrix sparsity depends on the basis set and geometry and to
some extend on the band gap.
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Taking Advantage of Sparsity Patterns

Sparsity appears in blocks.

Reorder atoms to merge the
atom blocks in larger ones.

Use BLAS for operations on
blocks and Compressed-Sparse
Row (CSR) format for block
storage.

Enforce sparsity by small element
truncation.

Unordered

Blocked by
atoms

Reordered
and blocked

Alkane chain Fock matrix
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F → D Step With Sparse Matrices

Use Trace-Correcting
Purification – a series of
spectral transformations.

Performance limited by the
sparse matrix
multiplication speed.
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compute P = (lmax I-F)/(lmax-lmin)
while abs(trace(P)-N)>threshold
if(trace(P)>N) then

P := P*P
else

P := 2*P-P*P
end while
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Example TC2 Application
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Problems with TC2

Number of TC2 iterations depends the bandgap.

Control the error: TC2 error grows exponentially with the
number of iterations.

More flexible representation than Compressed Sparse Row
is needed for easy implementation of other algorithms.
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Systematic Small-Submatrix Selection Algorithm

Error introduced by truncation of small elements.

First approaches considered only distance between atoms
and empirical threshold factors – unreliable!

More advanced approaches look at the norms of neglected
blocks – more reliable but strict error control still
impossible.

SSSA looks at the error of the entire matrix. Provides
strict error control.
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The Effect of SSSA on Total Energy Error

Benchmark on water clusters with Hartree-Fock and STO-3G.
alg. 1: threshold based filtering, alg. 2: SSSA.
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SSSA provides rigorous error control. → Saves time and gives
trustworthy results. Energy extrapolation possible.
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Hierarchic Matrix Library (C++)

HML allows for low-overhead random element access.

0 0
0 0 0

typedef Matrix<Matrix<Matrix<double> >
> MyMatrixType;
typedef Matrix<Matrix<Matrix<long double> >
> MyAccurateMatrixType;



Hierarchic
Matrices

P. Sa lek

Sparse QM

Error Control

HMLib

Parallelization

HML Features

Easy to code and maintain.

Block size determined by the architecture performance,
not chemistry.

Low overhead random element access.

Blocked algorithms easy to express:
1 Matrix multiplication, also by transposed matrices.
2 Use of matrix symmetry.
3 INverse CHolesky factorisation (INCH).
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Block Size Tradeoff

Smaller block size → more opportunity for screening.

Larger block size → better block-block multiplication
performance.
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Example Implementation of C := beta*C + A*B

static void multiply(const Matrix<Telement>& A,

const Matrix<Telement>& B,

Matrix<Telement>& C, double beta) {

for (int colC = 0; colC < C.ncols; colC++)

for (int rowC = 0; rowC < C.nrows; rowC++) {

Telement::multiply(A(rowC, 0), B(0, colC),

C(rowC, colC), beta);

for (int colA = 1; colA < A.ncols; colA++)

Telement::multiply(A(rowC, colA), B(colA, colC),

C(rowC, colC), 1);

}

}

Lowest level (block) multiplication expressed in terms of
BLAS calls.

Template expansion will generate (instantiate) code for all
the remaining hierarchy levels.
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Intel MKL vs HML Benchmark

HML design allows for easy implementation of symmetric
matrix multiplication (sysq: S = αT 2 + βS) as needed by
TC2:
sysq twice faster than general sparse multiplications.
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Matrix multiplication benchmark: water clusters/3−21G

dgemm (MKL)
dgemm (HML τ = 10−6)

dsysq (HML τ = 10−6)
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OpenMP Parallelization

Parallel programs necessary to
efficiently use modern multi-core
hardware.

OpenMP less invasive and easier
to load-balance.

Problems with scaling and. . .
compiler support.

Poor compiler support! GNU gcc
is the only reliable,
OpenMP-enabled compiler
known to us so far.
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Details of OpenMP Parallelization

Pick a level in the hierarchy, run a
parallel loop with dynamic
scheduling over it.

Approach trivial to implement.

Higher levels: coarse load
distribution.

Lower levels: thread startup
overhead.

0 0
0 0 0
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Exceptions and OpenMP

OpenMP and C++ exceptions do interact.

Threads must catch any exceptions that are generated.
The behavior is undefined otherwise.

We do the right thing (in case you ask).

#pragma omp parallel for
for (int i = 0; i < MAX; i++) {
try {
// Heavy lifting here
} catch (...) { /* Handle it nicely. */ }

}
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Compiler Problems

GNU C++ OpenMP support since 4.1(?). No problems
found. Sequential performance lower than its
competitors.

Portland C++ fairly warns that it cannot handle exceptions
and OpenMP at the same time. A honest
warning but. . .

Intel C++ 3 versions tried. All of them had bugs either in
sequential code or in OpenMP parallelization.
8.1 fails to generate correct sequential code;
miscompiles OpenMP code as well.
9.1 works sequentially; compiler crashes with
executed with -openmp flag.
10.0 fails to generate correct sequential code.
Support tickets with Intel are open.
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OpenMP Speedup

Timings taken on 1.5GHz Itanium2, 4 CPU (luc2, PDC),
4 threads.

Glycine-Alanine chain with 1600+ atoms, HF method.
GNU C++.

Operation CPU time [s] Wall time [s] Speedup

FDS-SDF 133.54 53 2.66
Purification 947.59 454 2.13

Acceptable multiplication load balancing (3.5/4.0) but
serial data management has negative impact on scalability.

Additionally, purification involves serial error estimation
routines.
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Summary & Outlook

SSSA – for strict error control.

HML – flexible sparse matrix representation.

A number of algorithms (arbitrary MxM multiplications,
inverse Cholesky factorisation) already implemented.

OpenMP parallelization.

Outlook

Analyse the sparsity in the QM methods beyond the
algorithms relevant for SCF: Linear response for
calculation of molecular properties.
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Small Submatrix Selection Algorithm (SSSA)

Given a matrix norm ‖ · ‖ and an error limit ε we want
to find a sparse approximation Ã of A so that ‖A− Ã‖ < ε.

SSSA:

1 Compute the Frobenius norm of each submatrix.

2 Sort the values in descending order.

3 Remove submatrices from the end as long as the error is
within desired accuracy.

=⇒ Error very close to the requested value in the Frobenius
norm.
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