A Keynote Presentation to LCSC 2006:

Multicore Beowulf Clusters for Petaflops-scale Computing

Thomas Sterling

Louisiana State University
California Institute of Technology
Oak Ridge National Laboratory

October 18, 2006

The new 512-host dual-Xeon cluster at LSU

Integrator: Atipa HPL benchmark: 2.1 Tflops

- The amount of useful work performed on a single application by a Petaflops-scale (delivered performance) system in one year
 - Application dependent
- Equivalent to the Simulation of the evolution visible-lifetime of the Pinwheel Galaxy (M101)
 - Approximately 1 trillion stars
 - Approximately 100 billion years
 - Treated as an N-body tree code
 - Ignore dissipative medium
 - When the lights turn off due to:
 - Singularity assimilation
 - Kinetic Evaporation
- Equivalent to approximately 1 billion Standard Compute Days
 - A good days run on a desk top
 - 8 to 10 ours overnight or from morning to lights-out
 - A moving target, changes with hardware evolution

Proteins: the Basic Building Blocks of Life

Function known for many proteins

Structural: keratin (skin, hair, nail),

collagen (tendon), fibrin (clot)

Motive: actomyosin (muscle) Transport: Hemoglobin (blood)

Catalysis: Enzymes

Sequence known for "all" proteins (genome project)

There are 20 natural amino acids with different physicochemical properties, such as: shape, volume, flexibility, hydrophobic, hydrophilic,

Precursor of fibrin. Fibrin polymerizes to form blood clots. Conversion of fibrinogen to fibrin is regulated via a cascade of factors to control blood

>3FIB: FIBRINGEN GAMMA CHAIN HDITGKDCQDIANKGAKQSGLYFIKPLKANQQFLVYCEIDG SNGWTVFQKRLDGSVDFKKNWIQYKEGFGHLSPTGTTEFWLG NEKIHLISTQSAIPYALRVELEDWNGRTSTADYAMFKVG KYRLTYAYFAGGDAGDAFDGFDFGDDPSDKFFTSHNGNQFSTW DNDNDKFEGNCAEQDGSGWWMNKCHAGHLNGVYYQGGTYSKAS TPNGYDNGIIWATWKTRWYSMKKTTMKIIPFNRL

Global Climate Model Simulation

Precipitable Water and Precipitation Rate

Natural and Human Sources of

Greenhouse Gases

Computing Needs and Realities

- Throughput required ~5 years/day for ensemble simulation (century/month)
- Long integration times/ensembles required for climate
 - non-deterministic problem with large natural variability
 - long equilibrium time scales for coupled systems
 - computational capability 0th-order rate limiter
- Quality of solutions are resolution and physics limited
 - balance horizontal and vertical resolution, and physics complexity
 - computational capability 0th-order rate limiter

Issue	Motivation	Compute Factor
Spatial resolution	Provide regional details	$10^3 - 10^5$
Model completeness	Add "new" science	10^{2}
New parameterizations	Upgrade to "better" science	10^{2}
Run length	Long-term implications	10^{2}
Ensembles, scenarios	Range of model variability	10
Total Compute Factor		10^{10} - 10^{12}

Ref: A SCIENCE-BASED CASE FOR LARGE-SCALE SIMULATION

Volume 2

The U.S. is an official partner in ITER

International
Thermonuclear
Experimental
Reactor:

- European Union
- Japan
- United States
- Russia
- Korea
- China

- 500 MW fusion output
- Cost: \$ 5-10 B
- To begin operation in 2015

We didn't get it all right

- Yes: We determined that a Pflops was feasible
- No: we thought it would take 5-7 years longer
- Yes: We didn't think a new paradigm was needed
- No: we thought new technologies would be essential to complement (not replace) semiconductors
- Yes: We know silicon would continue on Moore's law
- No: We figured 1 GHz clocks by 2007
- Yes: We considered off the shelf micros would be part of the equation
- No: We assumed custom architectures would dominate
- Yes: We identified the key software challenges
- No: We thought they would get fixed by now

Performance Projection

Earth Simulator and TSUBAME

Rank	Site	Computer	Processors	Year	R _{max}	R _{peak}
1	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution IBM	131072	2005		367000
2	IBM Thomas J. Watson Research Center United States	BGW - eServer Blue Gene Solution IBM	40960	2005	91290	114688
3	DOE/NNSA/LLNL United States	ASC Purple - eServer pSeries p5 575 1.9 GHz IBM	12208	2006	75760	92781
4	NASA/Ames Research Center/NAS United States	Columbia - SGI Altix 1.5 GHz, Voltaire Infiniband SGI	10160	2004	51870	60960
5	Commissariat a l'Energie Atomique (CEA) France	Tera-10 - NovaScale 5160, Itanium2 1.6 GHz, Quadrics Bull SA	8704	2006	42900	55705.6
6	Sandia National Laboratories United States	<u>Thunderbird - PowerEdge</u> 1850, 3.6 GHz, Infiniband Dell	9024	2006	38270	64972.8
7	GSIC Center, Tokyo Institute of Technology Japan	TSUBAME Grid Gluster - Sun Fire X64 Cluster, Opteron 2.4/2.6 GHz, Infiniband NEC/Sun	10368	2006	38180	49868.8
8	Forschungszentrum Juelich (FZJ) Germany	JUBL - eServer Blue Gene Solution IBM	16384	2006	37330	45875
9	Sandia National Laboratories United States	Red Storm Cray XT3, 2.0 GHz Cray Inc.	10880	2005	36190	43520
10	<u>The Earth Simulator</u> <u>Center</u> Japan	<u>Earth-Simulator</u> NEC	5120	2002	35860	40960

Top-500 List: Architectures / Systems

- One of the Largest Clusters in Europe
- Technical University of Catalonia
- IBM eServer BladeCenter JS20
- 31.4 Teraflops peak performance
- 2268 dual nodes
- PowerPC970 2.2 GHz
- Main memory 9 Terabytes
- Myrinet
- Linux

Commodity Clusters vs "Constellations"

- An ensemble of N nodes each comprising p computing elements
- The p elements are tightly bound shared memory (e.g., smp, dsm)
- The N nodes are loosely coupled, i.e., distributed memory

- p is greater than N
- Distinction is which layer gives us the most power through parallelism

64 Processor Commodity
Cluster

64 Processor Constellation

Columbia

- NASA's largest computer
- NASA Ames Research Center
- A Constellation
 - 20 nodes
 - SGI Altix 512 processor nodes
 - Total: 10,240 Intel Itanium-2 processors
- 400 Terabytes of RAID
- 2.5 Petabytes of silo farm tape storage

Trends Oriving Issues/Trends

- Multicore
 - Now: 2
 - possibly 100's
 - will be million-way parallelism
- Heterogeneity
 - GPU
 - Clearspeed
 - Cell SPE
- Component I/O Pins
 - Off chip bandwidth not increasing with demand
 - Limited number of pins
 - Limited bandwidth per pin (pair)
 - Cache size per core may decline
 - Shared cache fragmentation
- System Interconnect
 - Node bandwidth not increasing proportionally to core demand
- Power
 - Mwatts at the high end = millions of Euros per year

- Motivation for Multi-Core
 - Exploits increased feature-size and density
 - Increases functional units per chip (spatial efficiency)
 - Limits energy consumption per operation
 - Constrains growth in processor complexity
- Challenges resulting from multi-core
 - Relies on effective exploitation of multiple-thread parallelism
 - Need for parallel computing model and parallel programming model
 - Aggravates memory wall
 - · Memory bandwidth
 - Way to get data out of memory banks
 - Way to get data into multi-core processor array
 - Memory latency
 - Fragments L3 cache
 - Pins become strangle point
 - Rate of pin growth projected to slow and flatten
 - Rate of bandwidth per pin (pair) projected to grow slowly
 - Requires mechanisms for efficient inter-processor coordination
 - Synchronization
 - Mutual exclusion
 - Context switching

Heterogeneous Architecture

- Combines different types of processors
 - Each optimized for a different operational modality
 - Performance > nX better than other n processor types
 - Synthesis favors superior performance
 - For complex computation exhibiting distinct modalities
- Conventional co-processors
 - Graphical processing units (GPU)
 - Network controllers (NIC)
 - Efforts underway to apply existing special purpose components to general applications
- Purpose-designed accelerators
 - Integrated to significantly speedup some critical aspect of one or more important classes of computation
 - IBM Cell architecture
 - ClearSpeed SIMD attached array processor

Implications, Ramifications, and Consequences

- Constellations will RULE!
 - Most parallelism in the nodes themselves
 - And did I mention multithreading, not much but some
 - By end of decade, perhaps
 - Starting at the middle and working up
 - Ultimately: Million processor (cores) systems
- Programming will be dominated by SMP/DSM nodes
 - NUMA is emerging on some vendor motherboards
 - Fragmented or disjoint programming?
 - Surely not MPI+OpenMP
 - Will we just ride MPI down to the cores and give up on SMP?
 - Or will MPI evolve to MPI-3?
 - One language to rule them all
- Linux will evolve
 - Adapt to multicore for the short term
 - Host something very different in the long term

Conventional Strategies to Address the Multi-Core Challenge

- Maintain status quo
 - Investment in current code stack
 - Investment in core design
- Increase L2/L3 cache size
 - Attempt to exploit existing temporal locality
- Increase chip I/O bandwidth
 - Reduce contention
 - Eventually embedded optical interfaces chip-to-chip
- Memory bandwidth aggregation through "weaver" chip
 - Balances processor data demand with memory supply rate
 - Enables and coordinates multiple overlapping memory banks
- Exploit job stream parallelism
 - Independent jobs
 - O/S scheduling
 - Concurrent parametric processes
 - · Multiple instances of same job across parametric set
 - · e.g., Condor
 - Coarse grain communicating sequential processes
 - Message passing; e.g., MPI
 - · Barrier synchronization

Limitations of Conventional Incremental Approaches to MultiCore

- Its not just SMP on a chip
 - Cores on wrong side of the pins
 - Users expect to see performance gain on existing applications
- Highly sensitive to temporal locality
 - Fragile in the presence of memory latency
 - Uses up majority of chip area on caching
- Emphasizes ALU as precious resource
 - ALU low spatial cost
 - Memory bandwidth is pacing element for data intensive problems
- Low effective energy usage
 - Suffers from core complexity
- Does not address intrinsic problems of low efficiency
 - Just hoping to stay even with Moore's Law
 - Single digit sustained/peak performance
 - Bad when ALU is critical path element
- The Memory Wall is getting Worse!

What is required

- Global name spaces; both data and active tasks
- Rich parallelism semantics and granularity
 - Diversity of forms
 - Tremendous increase in amount
- Support for sparse data parallelism
- Latency hiding
- Low overhead mechanisms
 - Synchronization
 - Scheduling
- Affinity semantics
- Do not rely on:
 - Direct control of hardware mechanisms
 - Direct management and allocation of hardware resources
 - Direct choreographing of physical data and task locality

ParalleX: a Parallel Execution Model

- Exposes parallelism in diverse forms and granularities
 - Greatly increases available parallelism for speedup
 - Matches more algorithms
 - Exploits intrinsic parallelism of sparse data
- Exploits split transaction processing
 - Decouples computation and communication
 - Moves work to data, not just data to work
- Intrinsics for latency hiding
 - Multithreading
 - Message driven computation
- Efficient lightweight synchronization overhead
 - Register synchronization
 - Futures hardware support
 - Lightweight objects
 - Fine grain mutual exclusion
- Provides for global data and task name spaces
 - Efficient remote memory accesses (e.g. shmem)
 - Lightweight atomic memory operations
- Affinity attribute specifiers
 - Automatic locality management
 - Rapid load balancing

Split Phase Transactions

- A transaction is a set of interdependent actions on exchanged values
- Transactions are divided between successive phases
- All actions of a transaction phase are relatively local
 - Assigned to a given execution element
 - Operations perform on local state for low latency
- Phases are divided at stages of remote access or service request
 - Thus, asynchronous phasing at split
- No waiting for response to remote resources

- A "locality" is a contiguous physical domain
- Guarantees compound atomic operations on local state
- Manages intra-locality latencies
- Exposes diverse temporal locality attributes
- Divides the world into synchronous and asynchronous
- System comprises a set of mutually exclusive, collectively exhaustive localities
- A first class object
- An attribute of other objects
- Heterogeneous
- Specific inalienable properties

Parcels

- Enables message-driven computation
- Messages that specify function to be performed on a named element
- Moves work and data between objects in different localities
- Parcels are not first-class objects
- Exists in the world of "parcel sets"
 - First-class objects
 - Transfer between parcel sets is atomic, invariant, and unobservable
- Major semantic content
 - Destination object
 - Action to be performed on targeted object
 - Operands for function to be performed
 - Continuation specifier

Parcels for Latency Hiding in

Latency Hiding with Parcels Idle Time with respect to Degree of Parallelism

- Threads are collections of related operations that perform on locally shared data
- A thread is a continuation combined with a local environment
 - Modifies local named data state and temporaries
 - Updates intra thread and inter thread control state
- Does not assume sequential execution
 - Other flow control for intra-thread operations possible
- Thread can realize transaction phase
- Thread does not assume dedicated execution resources.
- Thread is first class object identified in global name space
- Thread is ephemeral

- An important latency hiding and scheduling technique
- Overhead functions are not necessarily done optimally by high speed processors
- Moves data and task specification to local temporary storage of an execution element by external means
- Minimum overhead at execution site
- Almost no remote accesses
- Cycle: dispatch/prestage/execute/commit/control update
- High speed execution element operates on work queue
- Processors are dumb, memory is smart
- Good for accelerators, functional elements, precious resources

Fine-grain event driven synchronization: breaking the *barrier*

- A number of forms of synchronization are incorporated into the semantics
- Message-driven remote thread instantiation
- Lightweight objects
 - Data flow
 - Futures
- In-memory synchronization
 - Control state is in the name space of the machine
 - Producer-consumer in memory
 - e.g., empty/full bits
 - Local mutual exclusion protection
 - Synchronization mechanisms as well as state are presumed to be intrinsic to memory
- Directed trees and graphs
 - Low cost traversal

- User variables
- Synchronization variables and objects
- Threads as first-class objects
- Moves virtual named elements in physical space
- Parcel sets
- Process
 - First class object
 - Specifies a broad task
 - Defines a distributed environment
 - Spans multiple localities
 - Need not be contiguous

Policies not specified

- Execution order
- Language and language syntax
- What's special about hardware
- Runtime vs. OS responsibilities
- Load balancing

What's missing

- Affinity, colocation
- Fault intrinsics
- Meta threads
- -I/O
- Many details

PXIF – ParalleX Intermediate-form

- Not a programming language
- Provides command line-like hooks to relate to and control all elements and actions of ParalleX execution
- Lists of actions and operands
 - '(<action> <target object> <function operands>)'
 - Some special forms (sadly)
- Create, delete, and move objects
- Invoke, terminate, migrate actions
- Syntaxless syntax
 - Currently uses a prefix notation but is amenable to other forms as long as one-on-one isomorphism
 - Note that MPI has more than one syntax
- In-work
 - Not finished
 - Subject to change
 - But great progress

Reference Implementation

Goal

- Validation of semantics and PXI formulation
 - Correctness
 - Completeness
- Early testbed for experimentation and algorithm development
- Executable reference for future PXI implementations by external collaborators

Strategy

- Facilitates development of PXIF syntax specification
- Employ rapid prototyping software development environment
- Incremental design
 - Replace existing functions with PXI-specific modules
 - Refinement of ParalleX concepts and PXIF formalism

PXIF from Sources to Execution

Can't Change the Architecture but if I could:

But there may be a way ...And I am psyched!

- Cluster implementers and users are scum sucking bottom feeders
 - We take what we can get and do what we can
 - Has been a good strategy for many purposes for a decade
- We have not controlled architecture
 - Although we now control much of the software stack
 - Otherwise we've adopted available components
- But there may be a way and I am psyched!
 - A new line of products incorporating FPGA technology
 - Integrated with conventional nodes via industry standard interfaces

FPGA attached boards: a new opportunity for advanced execution models

- Based on prior work performed on MIND architecture as part of Caltech/JPL Gilgamesh project
- Goal: enhance scalability and efficiency
 - Hide system wide latency
 - Reduce parallelism control overhead
- Design FPGA-based hardware drivers and coprocessors to support ParalleX model
 - Parcel message-driven computation handler
 - Medium grained multithread execution scheduler
 - Global address translation support
 - Percolation pre-staging task manager
 - (possibly) local control object synchronization acceleration

The Changing Cluster Agenda

- 1994 would they work, could they be useful
- 1997 could we build & program them to be practical
- 2000 will they scale & can we manage them reliably
- 2003 can we win
- 2004 world domination
 - we inherit all the problems of HEC parallel computing that were not solved by previous generations of systems
- Today
 - As always, track rapidly advancing technology
 - Harness multicore and heterogeneous components
 - Advance execution and programming models and methods to address scalability, programmability, and power within the domain of increasing system complexity