Swedish National Infrastructure for Computing

SNIC Swedish HPC Landscape

Sverker Holmgren

SNIC-Mission

"The Swedish National Infrastructure for Computing (SNIC), under the jurisdiction of the Swedish Research Council, is a national resource intended to create integrated quality access to computational resources for Swedish research purposes where networks, data storage, computers, visualisation and various Grid-techniques can be used to produce a transparent resource"

Stated in the instruction for SNIC issued by the Swedish Research Council

SNIC-Mission

- Provide long term funding for HPC-resources in Sweden
- Coordinate investments in HPC-systems
- Coordinate competence at participating centers to optimize user support and quality of operations
- HPC-related development projects in
 - Computer systems
 - Storage
 - Networks
 - Computational science
 - Visualization
 - GRID-technology
- Disseminate information and knowledge about SNIC resources and their use
- Host the Swedish National Graduate School in Scientific Computing (NGSSC)

Why a Metacenter?

- Limited number of HPC experts in Sweden
- Proximity to users by having regional centers
 - In depth users support
 - Collaborations
 - Induction of new HPC usage
 - Points of entry to national infrastructure
- Load balancing national leading edge systems based on technical assessments and resource availability
- Grid technology
 - A metacenter can contribute to development
 - Grid technology enables metacenter co-ordination
- International collaboration as a unified structure
 - NorduGrid
 - EGEE/LCG

SNIC-centers

Center	SNIC Funding 2006 (MSEK)		
HPC2N	5,5		
UPPMAX	5,0		
PDC	12,8		
NSC	11,5		
C3SE (UNICC)	4,0		
LUNARC	4,4		
Sum	43,2		

 Significant contributions from hosting universities and other funding agencies.

Resource Contracts 2006

- Capability cluster, NSC (35 MSEK)
- Capacity cluster, LUNARC (6.6 MSEK)
- Capacity cluster, UPPMAX (5.3 MSEK)
- Capacity cluster, UNICC (5.0 MSEK)
- Upgrade of Itanium cluster, PDC (2.0 MSEK)

Organization

SNIC-Board

- Birgit Erngren (Chairman)
- Paula Eerola (GRID, Particle Physics, LU)
- Sinisa Krajnovic (CFD, Chalmers)
- Erland Källén (Climate simulations, SU)
- Bengt Persson (Bioinformatics, LiU)
- Hans Wallberg (SUNET, UmU)
- Erik Hagersten (Computer Science, UU)
- Uno Nävert (Numerical analysis, Chalmers)
- Billy Fredriksson (Saab, Linköping)

STAC

- Lars Andersson, C3SE (UNICC)
- Lennart Johnsson, PDC
- Bo Kågström, HPC2N
- Ingela Nyström, UPPMAX
- Göran Sandberg, LUNARC
- Sven Stafström, NSC
- Tord Ekelöf, SweGrid Pl
- Leif Nixon, NDGF national coordinator
- Per Öster, EGEE ROC coordinator

SNAC

- Lars-Erik Lindgren, Luleå Technical University (Chair)
- Oxana Smirnova, CERN/Lund University
- Igor Abrokosov, Linköpigs University
- Per Hyldgaard, Chalmers University of Technologi
- Peter Olsson, Umeå University
- Johan Åqvist, Uppsala University
- Bo Jönsson, Lund University
- Aatto Laaksonen, Stockholm University
- Lars Ojamäe, Linköpings University
- Per Lötstedt, Uppsala University
- Thomas Rylander, Chalmers University of Technology
- Maya Neytcheva, Uppsala University
- Mats Holmström, Umeå University
- Gunilla Svensson, Stockholm University

SNIC User Group

The aims of the user association are to:

- 3. establish a communication channel between SNIC and users for facilitating:
 - -a. the dissemination of information about resources and services,
 - -b. awareness of user viewpoints, and
 - -c. awareness of needs through analyses and questionnaires;
- 4. establish a forum for discussions and exchanges between users by arranging user meetings and maintaining a web site; and
- to ensure user representation in SNIC through the recommendation of two members for the SNIC board, following an election process.

SNUG steering committee

- Sinisa Krajnovic, Chalmers
 - sinisa@chalmers.se
- Mattias Ellert, Uppsala
 - Mattias.Ellert@tsl.uu.se
- Oxana Smirnova, Lund,
 - oxana.smirnova@hep.lu.se
- Bengt Persson, Linköping
 - bpn@ifm.liu.se
- Ann-Charlotte Berglund, Uppsala
 - Ann-Charlotte.Berglund@lcb.uu.se
- Peter Olsson, Umeå
 - peter.olsson@tp.umu.se

Interaction with funding bodies

By coordinating Swedish HPC and interact with other funding bodies SNIC has managed to increase the available funding for Swedish HPC

Funding bodies

- Swedish Research Council
- Knut and Alice Wallenberg Foundation
- Foundation for Strategic Research

SNIC guarantees

- Optimal technology choices
- Cost sharing with other parties
- Cost efficient operations
- High level of service
- Accounts for usage and scientific production

Obtained funding

- 6 SweGrid clusters storage
 - 23 MSEK (KAW)
- New cluster at HPC2N
 - (10 MSEK) (KAW)
- Chemistry computer at PDC
 - (4 MSEK) (KAW)
- Condensed matter computer
 - (4 MSEK) (VR)
- Climate computer at NSC
 - (5.4 MSEK) (KAW)

International Collaborations

Collaborations co-ordinated through SNIC

- NorduGrid
 - Largest resource contributor through SweGrid
- EGEE (Enabling Grids for EsciencE)
 - North European Regional Operations Center
 - Security co-ordinator
- BalticGrid (Baltic Extension of EGEE), co-ordinator
- Nordic Data Grid Facility (NDGF)
- Metacenter co-ordination with Norway
- ESFRI working group on HPCN
- eIRG (Electronic Infrastructure Reflection Group)
- HET
- SNIC centers have several EU-projects

SNIC review 2005

- Praise for SNIC coordination
- Recommends continued build-up of SNIC
- Increased user and center ambition
- Emphasis on Grid build-up
- Future vision in a landscape document
- SNIC Evaluation recommends increased scope and ambition for Swedish HPC
 - Large scale resources
 - Enabling Swedish world class science
 - Participation in international projects
- Investment in a new large scale shared memory resource
- Continued build-up of storage facilities

The Swedish HPC landscape

- Forms the basis of the SNIC strategy 2006-2009
- Describes Trends
 - Science
 - Services
 - Hardware
- Analyzes needs
- Roadmaps for landscape specified
- Jointly authored by STAC
- Assumes funding at 90 MSEK/year level

Trends

- HPC is the third research paradigm
- Existing and new application disciplines
- Number of users is increasing
- "Sensor based" science is putting new demands on HPC resources
- Storage and data services of increasing interest
- Technical paradigm shifts are under way
 - PC-clusters with capability nodes
 - Multicore technologies
 - GRID-technology and "cyberinfrastructure"
 - Light paths

International Outlook

- US has several new initiatives and is building a "cyberinfrastructure" (PITAC report)
- Japan & US is driving development
- In Europe the EU Framework Programmes are putting increasing emphasis on HPC and Grids
 - European scale HPC centers are being discussed
 - Pan European Grid Infrastructure (EGI)
- In the Nordic region other initiatives similar to SNIC have been launched
- GRID-Technologies will enable extensive Nordic and European collaborations

Needs

- Sweden is currently in "good" shape
 - Increase of SNAC resources is at par with number of projects
 - Gone from 2 Mh to 10 Mh of allocated time in 5 years
 - A large number of researchers in Sweden crucially depend on the existence of SNIC resources
- Some users/user groups have extreme future needs
 - Some of these are not SNIC users today
 - Significant large investments are needed
- Software is increasingly being regarded as a tool
 - Application oriented portals
- Monitor needs through
 - Statistics from Centers and SNAC
 - User surveys
 - Direct user contact
- Dominant need is still "Fast processors with high availability" followed by need for "large memory and scalability"

SNAC Usage

SNAC Usage

NSC

Computer Landscape

- Super scale computing
 - EU level resources (In Sweden?)
- User specific systems
 - In collaboration with user groups
- National SNAC resources
 - Capacity system (every second year)
 - Capability system (every second year) (SweGrid)
- Foundation level resources
 - For local needs at each site
 (3 systems per year)

Storage Landscape

- Class 1 Temporary storage: The storage is fast and covers a limited amount of computing elements in a local environment.
- Class 2 **Project storage:** Storage of active results during the lifetime of a project. It is accessible from every computing resource that is used in the project.
- Class 3 Mass storage or long-term storage: Contains results that are stored after a project is finished.
- Goal: All SNIC Class 2 and Class 3 storage should be transparently accessible from all SNIC computer systems by 2009
- Goal: Collaboration with eScience community (DISC) regarding data bases and data intensive applications

Network Landscape

- Next SUNET 2006: OptoSunet Hybrid Network with routed and point 2 point connections
- All universities connected to routed 10 Gbit/s
- Applications with special needs can be given point 2 point connections, 1Gbit/s, 2.5 Gbit/s, 10 Gbit/s (40 Gbit/s)
- Selected SNIC centers connected with point 2 point connections in pilot projects to:
 - Other SNIC centers
 - International centers
 - Experiments

Resource and Grid Environments

- Slow Gridification of all resources
 - Only when added value to users are show
 - Let the users decide access method to resources
- Focus on development of application portals
- Goal: All SNIC resources available through Grid interfaces by 2009
- Coordinate software licenses between centers

Human interface

- National Helpdesk
- Advanced consultancy time allocated through SNAC
- SNIC on-line material
- Restart of NGSSC
 - Funding obtained from VR + SSF
- SNIC interaction meetings
 - Next meeting hosted by LUNARC, November 20-21
- Outreach efforts targeting new users and tailored software solutions
 - Data intensive applications
 - Large users
- SNAC focus on "large" users.
 - Default allocations to all users
 - Include technical assessments in SNAC procedures

SNIC development projects

- Storage Infrastructure: The development of a national storage infrastructure within SNIC and a transparent access layer to storage services.
- Network development: A pilot study on the use of point-to-point lambda networks for some data intensive application as well as a study of optoSunet connections for SNIC.
- Visualization services: A pilot study on the distribution of rendered images. The
 results will be evaluated and form the basis for a policy decision on the future
 development of visualization services within SNIC.
- SweGrid co-ordination: The creation of a SweGrid management structure bridging the gap between the participating sites including subprojects such as the national helpdesk initiative.
- Performance measurements: The introduction of procedures and tools for performance measurements of application software in the assessment of SNAC proposals.
- Grid portals: Development of several application specific portals in key areas based on previous work on portals at SNIC centers.
- Software coordination: A survey of user need for application software and a compilation of existing
- licensing situations for relevant software.
- CMT systems: Pilot studies of multithreaded parallelization of important application codes to ensure efficient use of future SNIC resources.

Visualization Landscape

- Paradigm shift is under way
 - Visualize locally or remotely
 - Remotely for large (untransportable) data
 - Locally for smaller data
- Processors, storage and rendering closely coupled
- Distribution of rendered images or graphics primitives to clients over networks
- Visualization services provided by SNIC centers
- Gradual build-up and evaluation of concepts

Sweden b4 SNIC

- 3 National HPC-centres
- 3 Regional HPC-centres
- National resource allocations (SNAC)
- Budget
 - 30 MSEK (2001)
 - 45 MSEK (2002)
 - ...
- Several GRID projects
 - DataGrid (PDC, KI)
 - NorduGrid

- HPC2N
- UPPMAX
- PDC
- NSC
- UNICC
- LUNARC

SNIC - Agreements

SUNET connectivity

GigaSunet 10 Gbit/s

Typical POP at Univ.

Trends

- The third research paradigm
- Existing and new application disciplines
- Number of users is increasing
- "Sensor based" science is putting new demands on HPC resources
- Storage and data services of increasing interest
- Technical paradigm shifts are under way
 - PC-clusters
 - Multicore technologies
 - GRID-technology and "cyberinfrastructure"
 - Light paths

Increased Productivity

Develop

- State-of-the-art Integrated development environments
- High quality user support and training

Compute

- Fast and easy access to a multitude of heterogeneous computers in a homogenous way
- Store
 - Temporary (fast), project (available), long term (reliable)
- Transport
 - Fast and seamless access to data from several locations
- Analyze
 - Visualization locally or remotely

Network Landscape

• 2006

- 10 Gbit/s connections: Investigate how the HPC centres canintegrate 10 Gbit/s
- Lambda networks: Investigate how point-to-point connectionscan be used.
- SweGrid II networks: Include costs of 10 Gbit/s and lambda network connections in SweGridII proposal.

• 2007

- OptoSunet: Connect to OptoSunet with 10Gbit/s. Test and demonstrate the established connections.
- Full OptoSunet connectivity: Connect the remaining HPC centres

• 2008

 Point-to-point connections: Test and demonstrate usage of point-topoint.

• 2009

 Dynamic point-to-point connections: Establish operational procedures together with SUNET for establishing, maintaining and removing point-to-point

Visualization Landscape

- Paradigm shift is under way
 - Visualize locally or remotely
 - Remotely for large (untransportable) data
 - Locally for smaller data
- Processors, storage and rendering closely coupled
- Distribution of rendered images or graphics primitives to clients over networks
- Visualization services provided by SNIC centers
- Gradual build-up and evaluation of concepts

Remote Rendering

Visualization has become a data reduction pipeline

NVIS remote rendering — project

- Evaluate remote rendering solutions
- Joint project with IBM and SGI
 - IBM Deep Computing View
 - Server in Malmö, client in Linköping
 - SGI Visual serving
 - Server in Norrköping, client in Linköping
 - Pilot applications in medical visualization ...
 - Project report Q4 06

SweGrid production test bed

- Total budget 3.6 MEuro
- 6 GRID nodes
- 600 CPUs
 - IA-32, 1 processor/server
 - 875P with 800 MHz FSB and dual memory busses
 - 2.8 GHz Intel P4
 - 2 Gbyte
 - Gigabit Ethernet
- 12 TByte temporary storage
 - FibreChannel for bandwidth
 - 14 x 146 GByte 10000 rpm
- 370 TByte nearline storage
 - 120 TByte disk
 - 250 TByte tape
- 1 Gigabit direct connection to SUNET (10 Gbps)

SweGrid II

- Builds on proposal to KAW
- 10x capacity
 - CPU
 - Storage
 - Technical specification being developed
- Application will be submitted in January
- Installation during 2007
- Application specific portals
- Improved user support
- Interface to international projects
 - NDGF/NorduGrid
 - EGEE
- Special agreements for "large users"

Software Landscape

- Some application software can be regarded as infrastructure
 - Collaboration with developers
 - Coordinated licenses
 - Which ones?
- User input through surveys
- Hardware dedicated to special software
- Application portals
- SNIC software policy

Status & Development of Document

- Current version is 0.99
- Version 1.0 available soon
- Sent to SNUG for comments
 - Contact the SNUG steering committee if you wish to provide input on the document
- Version 2.0 produced by mid Dec
- Decision by SNIC board

Resource Contracts

- Centers invited to submit proposals for resources describing
 - Resource ambitions, scientific and technical specialization
 - Operational organization and infrastructure
 - Resource descriptions:
 - Technical solutions
 - Service agreements
 - Software licenses
 - Computer rooms
 - Operators
 - Possible cost sharing
 - Infrastructure investments
 - Other relevant information
- Budget
- Evaluation of material conducted by SNIC director

- Analysis based on
 - Affiliation contracts
 - · Available staff for operations
 - Existing resources
 - Center profiles
 - Technology co-ordination and watch, novelty of technology choices
 - User needs (SNAC)
- Discussed and reviewed by SNIC board
- Base funding decided upon 2004-03-19
- Implemented during 2004

Hardware strategy for 2004

- Upgrade of large scale 64 bit resource at PDC
- Build-up of local CPU-capacity at UNICC, LUNARC, and UPPMAX, partly through SweGrid
- Continue existing services at HPC2N, PDC and NSC
- Plan and implement national hierarchical storage based on HPC2N, PDC and NSC
- Focus technical support on usability of SweGrid

SNIC review 2005

- Praise for SNIC coordination
- Recommends continued build-up of SNIC
- Increased user and center ambition
- Emphasis on Grid build-up
- Future vision in a landscape document
- SNIC Evaluation recommends increased scope and ambition for Swedish HPC
 - Large scale resources
 - Enabling Swedish world class science
 - Participation in international projects
- Investment in a new large scale shared memory resource
- Continued build-up of storage facilities

User Survey Results

How familiar are you with SNIC and its initiatives?

User Survey Results

What is your overall opinion of the SNIC initiative?

SweGrid production testbed

- The first step towards HPC center Gridification
- Initiative from
 - All HPC-centers in Sweden
 - IT-researchers wanting to research Grid technology
 - Users
 - Life Science
 - Earth Sciences
 - Space & Astro Physics
 - High energy physics
- PC-clusters with large storage capacity
- Build for GRID production
- Participation in international collaborations
 - LCG
 - EGEE
 - NorduGrid
 - ...

SweGrid production testbed

0.25 MEuro/year

- Portals
- Databases
- Security

Globus Alliance EGEE - security 0.25 MEuro/year6 Technicians

2.5 MEuro 6 PC-clusters

Forming the core team for the Northern EGEE ROC

600 CPUs for throughput computing

SweGrid production test bed

- Total budget 3.6 MEuro
- 6 GRID nodes
- 600 CPUs
 - IA-32, 1 processor/server
 - 875P with 800 MHz FSB and dual memory busses
 - 2.8 GHz Intel P4
 - 2 Gbyte
 - Gigabit Ethernet
- 12 TByte temporary storage
 - FibreChannel for bandwidth
 - 14 x 146 GByte 10000 rpm
- 370 TByte nearline storage
 - 120 TByte disk
 - 250 TByte tape
- 1 Gigabit direct connection to SUNET (10 Gbps)

Persistent storage on SweGrid

Size Administration Bandwidth Availability

SweGrid status

- All nodes installed during January 2004
- Extensive use of the resources already
 - Local batch queues
 - GRID queues through the NorduGrid middlware
 - ARC
 - 60 users
- 1/3 of SweGrid is dedicated to HEP (200 CPUs)
- Contributing to Atlas Data Challenge 2
 - As a partner in NorduGrid
- Currently deploying LCG-2
 - Compatibility between ARC and LCG-2 (gLite)
- Forms the core of the Northern EGEE ROC

The first users of SweGrid

Research Area

What did they think?

How have you accessed SweGrid Resources?

How have you found porting your applications to SweGrid to be?

What is your overall impression of use of SweGrid resources?

Do you think all supercomputing resources should be available on a Grid?

SweGrid II

SweGrid I

- Introduced Grid technology in Sweden
- Enabled collaborations (EU + Nordic + Baltic)
- Increased throughput capacity

SweGrid II

- KAW application for hardware support
- SNIC funding for operations
- Will be a key component in NDGF
- Large effort needed for increased user support (3 FTEs) 3 MSEK/year

Large data at HPC centers

Data Curation and Services

- A Swedish center for data curation and services
 - 5 application experts (curation and user support)
 - 5 technicians (services and tool development)
- Budget 10 MSEK/year
- Hardware infrastructure provided by SNIC
- Software infrastructure
 - Licenses
 - Tools developed by center
- SUNET access

eScience Training

- PITAC report on CSE (June 2005)
 - Substantial difficulty for CSE researchers in finding competence in algorithms, software, architecture, data management, visualization, performance analysis,...
- Education of users to improve and spread the use of computational methods
 - Education is needed to introduce new user groups to the field of HPC
 - Multiply effect of investments in computational hardware
 - Development of new software will be essential for efficient use of future computer architectures
- Special form of education is needed
 - Users from different field with different backgrounds
 - Geographically distributed

A Swedish opportunity

- Build on experiences from NGSSC!
 - 12 new courses, given at 48 occasions. More than 1000 participants from a variety of fields in science and technology
 - Special course format, expert lecturers
 - Early initiative, followed by interest internationally
 - Praised by the SNIC evaluation committee
- 3 MSEK funding from SSF for adopting to SNIC needs
- Develop new courses for emerging user groups
 - Life Sciences
 - Social Sciences
 - Humanities
 - One important theme: Handling and analysis of data

Short term suggestions

- Current SNIC budget 45 MSEK/year
- New areas of responsibility:
 - Data curation and services + 10 MSEK/year
 - eScience training + 3 MSEK/year
 - Grid user support + 3 MSEK/year

Long term vision

- Infrastructure for eScience
 - Service oriented
 - Learn
 - Develop
 - Compute or Access
 - Transport
 - Analyze
 - Collaborate
 - Disseminate
- Roadmap for these services should be developed
- Needed technology components should be identified
- Application oriented integrated environment for "all" services
- Needed R&D efforts to provide services and components
- An organisational structure with means to implement structure should be set up

European perspective

- The very high end HPC will only be available on the European level.
 - How do Swedish researchers get access to these resources?
 - Participation in EU projects
 - EU level peer review
 - Infrastructure agreements
- European perspective needs to be included in the national infrastructure for eScience
- Which services can Sweden provide in

Metacenter Projects

- HPC portals
 - HPC2N, PDC, NSC
- National help desk
 - HPC2N, PDC, NSC
- National storage solutions
 - NSC, PDC, HPC2N
- National application support in Chemistry
 - LUNARC
- National application support in Bioinformatics
 - UPPMAX
- EGEE Regional Operations Center
 - PDC, NSC, HPC2N

Insatser - Behov

- Utveckling av svensk GRID-kapacitet
 - Throughput computing och nationell lagring
 - 20 Mkr
- Regional hårdvara
 - Understryker regionala centras ansvar för att fånga upp nya användare
 - 15 Mkr
- Nationell spetskapacitet
 - För högt prioriterad forskning som konkurrerar i världsfronten
 - 10 Mkr
- Forskarskola i teknisk-vetenskapliga beräkningar (NGSSC)
 - Fokuserad utbildning i modern beräkningsteknik
 - 10 Mkr

SweGrid production testbed

- The first step towards HPC center Gridification
- Initiative from
 - All HPC-centers in Sweden
 - IT-researchers wanting to research Grid technology
 - Users
 - Life Science
 - Earth Sciences
 - Space & Astro Physics
 - High energy physics
- PC-clusters with large storage capacity
- Build for GRID production
- Participation in international collaborations
 - LCG
 - EGEE
 - NorduGrid
 - ...

SweGrid subprojects

- 0.25 MEuro/year
- Portals
- Databases
- Security

Globus Alliance EGEE - security 0.25 MEuro/year6 Technicians

2.5 MEuro 6 PC-clusters

Forming the core team for the Northern EGEE ROC

600 CPUs for throughput computing

SweGrid production test bed

- Total budget 3.6 MEuro
- 6 GRID nodes
- 600 CPUs
 - IA-32, 1 processor/server
 - 875P with 800 MHz FSB and dual memory busses
 - 2.8 GHz Intel P4
 - 2 Gbyte
 - Gigabit Ethernet
- 12 TByte temporary storage
 - FibreChannel for bandwidth
 - 14 x 146 GByte 10000 rpm
- 370 TByte nearline storage
 - 120 TByte disk
 - 250 TByte tape
- 1 Gigabit direct connection to SUNET (10 Gbps)

SweGrid status

- All nodes installed during January 2004
- Extensive use of the resources already
 - Local batch queues
 - GRID queues through the NorduGrid middlware
 - ARC
 - 60 users
- 1/3 of SweGrid is dedicated to HEP (200 CPUs)
- Contributing to Atlas Data Challenge 2
 - As a partner in NorduGrid
- Currently deploying LCG-2
 - Compatibility between ARC and LCG-2 (gLite)
- Forms the core of the Northern EGEE ROC

The first users of SweGrid

Research Area

What did they think?

How have you accessed SweGrid Resources?

How have you found porting your applications to SweGrid to be?

What is your overall impression of use of SweGrid resources?

Do you think all supercomputing resources should be available on a Grid?

SNIC User Group

- First user meeting held in June 2004
- Organized by PDC
- Fairly low participation late announcement
- Next meeting planned for June 2005
 - Formalization of user association
 - Nomination of SNIC board members
- Annual user survey could be organized by SNUG

User Survey Results

How familiar are you with SNIC and its initiatives?

User Survey Results

What is your overall opinion of the SNIC initiative?

NGSSC

- National Graduate School in Scientific Computing
 - Disseminate knowledge on computational methods
- Comprehensive course package (20 credits)
 - Course located at different universities and given as summer courses
- 60 graduate students currently enrolled
- 20 examined PhDs
 - Very good results, publications, dissertations and employment
- No further SSF funding for new admissions

SNIC plans

- National helpdesk initiative
- Advanced user support allocations
- Policy for local/national allocations
- Promotion of eScience initiative in Sweden
- Increased Grid activities
- Participation in NDGF
- Development and testing of grid economy
- Increased hardware investments

SNOR GRID

4 - year vision

- A common GRID *landscape* for NORGRID and SWEGRID
 - Researchers should be able to submit a job to a Common GRID interface
 - Data should be transparently accessible
 - Accounting should be provided
 - Resources should be allocated through tokens that can be exchanged between the countries

National helpdesk

- 1,5 FTE/center x 3 to conduct users support I
- Sweden has no co-ordination at this point.
- SweGrid support has had slower response times
- Smaller centers have varying support strategies.

In depth user support

Affiliation process

- Centers invited to submit descriptions
 - Overview of organization
 - Center profile
 - Existing services and resources
 - Future plans
 - Proposed role in SNIC
 - Financial overview and proposed budget
- Evaluation of material conducted by SNIC director
- Discussed and reviewed by SNIC board
- Base funding decided upon 2002-12-12
- Implemented during 2003

Used evaluation criteria

- National impact
- Local impact
- Service levels
- Center capacity
- Operational competence
- User request for center
- R&D efforts at center
- International collaborations
- Cost efficiency
- Matching funding from university
- Matching funding from industry
- Center potential to contribute to the mission of SNIC