
Linux Performance Analysis:
Parallel, Serial and I/O

Per Ekman (pek@pdc.kth.se)
System Engineer, PDC/KTH

Philip Mucci (mucci@cs.utk.edu)
Visiting Scientist, PDC/KTH
Research Consultant, UTK

LCSC 2004 Linköping, Sweden

http://www.cs.utk.edu/~mucci/latest/mucci_talks.html
http://www.pdc.kth.se/~pek

Overview

● PAPI and Hardware Performance Analysis
● A Production Ready Tool Suite

● Site Wide Performance Monitoring at PDC

● IOTrack: Passively Tracking I/O

Overall Performance

“The single most important impediment to
good parallel performance is still poor single

node performance.”
 William Gropp

Argonne National Lab

Linux Performance
Infrastructure

● Contrary to popular belief, the Linux
Performance Infrastructure is well
established.

● PAPI/Kernel Support is +7 years old.

● Wide complement of tools from which to
choose, but few are production quality.

● Sun, IBM, Dell, HP and other major vendors
are focusing on Linux Clustering and HPC.

– More focus on performance than ever before.

The Adaptability Gap
(Thanks Bjørn)

● Until we have....

– Hardware counter based profile directed
feedback in compilers.

– Adaptable, reconfigurable, real-time
computing resources that eat C/Fortran not
VHDL. (MMU's, FPGA's)

– Matched memory, interconnect bandwidth,
logic-level latencies for offboard
communication.

– Generalized zero-copy infrastructure in
kernel/user space.

● We need tools and expertise to narrow it.

Hardware Performance
Counters

● Performance Counters are hardware registers
dedicated to counting certain types of events within
the processor or system.
– Usually a small number of these registers (2,4,8)
– Sometimes they can count a lot of events or just a few
– Symmetric or asymmetric

● Each register has a various modes of operation.
– Interrupt on overflow
– Edge detection (cycles vs. events)
– User vs. kernel mode

• Cycle count
• Instruction count

– All instructions
– Floating point
– Integer
– Load/store

• Branches
– Taken / not taken
– Mispredictions

• Pipeline stalls due to
– Memory subsystem

– Resource conflicts

• Cache
– I/D cache misses for

different levels
– Invalidations

• TLB
– Misses
– Invalidations

Hardware Performance Data

Linux Kernel Support for PMC

● Performance counters are part of the thread
context, just like FPU registers.

– Dedicated, per-thread measurements
● Cost of switching is minimal when lazy-

evaluation is used.
● Linux Kernel Integration

– IA64: HP designed and pushed 'perfmon' into
mainline by inheritance. (syscall based)

– x86/x86_64: PerfCtr, designed by Mikael
Pettersson in Uppsala. (mmap based)

● Accepted in 2.6-mm series.

PerfCtr 2.6 Context Switches

2.4.22174 2.4.22174
Perfctr (not
used)

2.4.22174
PerfCtr
(used)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Process
FPU
Thread
Thread & FPU

PAPI
Performance Application Programming

Interface

• The purpose of PAPI is to implement a
standardized portable and efficient API to access
the hardware performance monitor counters
found on most modern microprocessors.

• The goal of PAPI is to facilitate the optimization of
parallel and serial code performance by
encouraging the development of cross-platform
optimization tools.

PAPI 3.0

● Full enumeration of platform-specific metrics
● Overflow and profiling on multiple events
simultaneously

● Complete memory hierarchy information
● Complete shared library map
● Thread safe, high level API
● Efficient thread local storage and locking
routines

● 32 and 64-bit profiling buckets (vs. 16-bit in
SVR4/POSIX)

PAPI 3.0 Release

● Final release scheduled this week after 1
year Beta.

● Vastly lower measurement overheads.
● New support for Intel EM64T and Cray X1

(SSP/MSP)
● Updated Web Site and Documentation:

– Links to New tools, Example codes

– Improved Web page

– Bugzilla Database

Open Source Tool Suite

● Mostly Orthogonal Functionality
● Well Documented

● Extensively Tested

● Actively Supported

– Not just a research effort or a funding vehicle.
● 100% Open Source

● Expose Gaps in Research

Essential Tool Functionality

● Must work with Pthreads, OpenMP, MPI, fork()
and exec().

● Passive Tools

– Require no modification/instrumentation of
source or object code.

● Library preloading and/or name shifting.
● Active Tools

– Instrumentation performed.
● Binary
● Source

Tool Methodology

● Direct Measurements read raw values of
Metrics.

– Overall/Global Measurements. (aka Quick &
Dirty)

– Site based.
● Module/Function/Loop/Basic Block
● Address Range

Tool Methodology

● Indirect Measurements infer values from
probabilistic distributions.

● Statistical Profiling, developing a Histogram
with X axis = Location, Y axis = Event Count.

● Event could equal:

– Timer interrupts (like Gprof)

– Hardware Counter Overflows on arbitrary
Thresholds

The PDC Tool Collection

● PerfSuite from NCSA
● HPCToolkit from Rice U.

● TAU from U. Oregon.

● MpiP from LLNL

● Jumpshot/MPICH from MS State.

● IOTrack from PDC/KTH

PerfSuite from NCSA

● psrun/psprocess
● Command line tool similar to IRIX's perfex

command.
● Does aggregate counting of the entire run.

Also provides statistical profiling.
● Uses library preloading.

● Output is XML or Plain Text.

– Machine information

– Raw counter values

– Derived metrics

PSRUN Sample Output
PerfSuite Hardware Performance Summary Report
Version : 1.0
Created : Mon Dec 30 11:31:53 AM Central Standard Time 2002
Generator : psprocess 0.5
XML Source : /u/ncsa/anyuser/performance/psrun-ia64.xml
Execution Information
==
Date : Sun Dec 15 21:01:20 2002
Host : user01
Processor and System Information
==
Node CPUs : 2
Vendor : Intel
Family : IPF
Model : Itanium
CPU Revision : 6
Clock (MHz) : 800.136

Memory (MB) : 2007.16
Pagesize (KB): 16
Cache Information
==
Cache levels : 3

Level 1
Type : data
Size (KB) : 16
Linesize (B) : 32
Assoc : 4
Type : instruction
Size (KB) : 16
Linesize (B) : 32
Assoc : 4

Level 2
Type : unified
Size (KB) : 96
Linesize (B) : 64
Assoc : 6

Level 3
Type : unified
Size (KB) : 4096
Linesize (B) : 64
Assoc : 4

PSRUN Sample Output
Index Description Counter Value
==
 1 Conditional branch instructions mispredicted..................... 4831072449
 2 Conditional branch instructions correctly predicted.............. 52023705122
 3 Conditional branch instructions taken............................ 47366258159
 4 Floating point instructions...................................... 86124489172
 5 Total cycles... 594547754568
 6 Instructions completed... 1049339828741
 7 Level 1 data cache accesses...................................... 30238866204
 8 Level 1 data cache hits.. 972479062
 9 Level 1 data cache misses.. 29224377672
 10 Level 1 instruction cache reads.................................. 221828591306
 11 Level 1 cache misses... 29312740738
 12 Level 2 data cache accesses...................................... 129470315862
 13 Level 2 data cache misses.. 15569536443
 14 Level 2 data cache reads... 110524791561
 15 Level 2 data cache writes.. 18622708948
 16 Level 2 instruction cache reads.................................. 566330907
 17 Level 2 store misses... 1208372120
 18 Level 2 cache misses... 15401180750
 19 Level 3 data cache accesses...................................... 4650999018
 20 Level 3 data cache hits.. 186108211
 21 Level 3 data cache misses.. 4451199079
 22 Level 3 data cache reads... 4613582451
 23 Level 3 data cache writes.. 38456570
 24 Level 3 instruction cache misses................................. 3631385
 25 Level 3 instruction cache reads.................................. 17631093
 26 Level 3 cache misses... 4470968725
 27 Load instructions.. 111438431677
 28 Load/store instructions completed................................ 130391246662
 29 Cycles Stalled Waiting for memory accesses....................... 256484777623
 30 Store instructions... 18840914540
 31 Cycles with no instruction issue................................. 61889609525
 32 Data translation lookaside buffer misses......................... 2832692

Event Index
==
 1: PAPI_BR_MSP 2: PAPI_BR_PRC 3: PAPI_BR_TKN 4: PAPI_FP_INS
 5: PAPI_TOT_CYC 6: PAPI_TOT_INS 7: PAPI_L1_DCA 8: PAPI_L1_DCH
 9: PAPI_L1_DCM 10: PAPI_L1_ICR 11: PAPI_L1_TCM 12: PAPI_L2_DCA
 13: PAPI_L2_DCM 14: PAPI_L2_DCR 15: PAPI_L2_DCW 16: PAPI_L2_ICR
 17: PAPI_L2_STM 18: PAPI_L2_TCM 19: PAPI_L3_DCA 20: PAPI_L3_DCH
 21: PAPI_L3_DCM 22: PAPI_L3_DCR 23: PAPI_L3_DCW 24: PAPI_L3_ICM
 25: PAPI_L3_ICR 26: PAPI_L3_TCM 27: PAPI_LD_INS 28: PAPI_LST_INS
 29: PAPI_MEM_SCY 30: PAPI_SR_INS 31: PAPI_STL_ICY 32: PAPI_TLB_DM

PSRUN Sample Output
Statistics
==
Graduated instructions per cycle....................................... 1.765
Graduated floating point instructions per cycle........................ 0.145
% graduated floating point instructions of all graduated instructions.. 8.207
Graduated loads/stores per cycle....................................... 0.219
Graduated loads/stores per graduated floating point instruction........ 1.514
Mispredicted branches per correctly predicted branch................... 0.093
Level 1 data cache accesses per graduated instruction.................. 2.882
Graduated floating point instructions per level 1 data cache access.... 2.848
Level 1 cache line reuse (data).. 3.462
Level 2 cache line reuse (data).. 0.877
Level 3 cache line reuse (data).. 2.498
Level 1 cache hit rate (data).. 0.776
Level 2 cache hit rate (data).. 0.467
Level 3 cache hit rate (data).. 0.714
Level 1 cache miss ratio (instruction)................................. 0.003
Level 1 cache miss ratio (data).. 0.966
Level 2 cache miss ratio (data).. 0.120
Level 3 cache miss ratio (data).. 0.957
Bandwidth used to level 1 cache (MB/s)................................. 1262.361
Bandwidth used to level 2 cache (MB/s)................................. 1326.512
Bandwidth used to level 3 cache (MB/s)................................. 385.087
% cycles with no instruction issue..................................... 10.410
% cycles stalled on memory access...................................... 43.139
MFLOPS (cycles).. 115.905
MFLOPS (wallclock)... 114.441
MIPS (cycles).. 1412.190
MIPS (wallclock)... 1394.349
CPU time (seconds)... 743.058
Wall clock time (seconds).. 752.566
% CPU utilization.. 98.737

HPCToolkit from Rice U.

● Use event-based sampling and statistical
profiling to profile unmodified applications:
hpcrun

● Interpret program counter histograms:
hpcprof

● Correlate source code, structure and
performance metrics: hpcview/hpcquick

● Explore and analyze performance databases:
hpcviewer

● Linux IA32, x86_64, IA64

HPCToolkit Goals

● Support large, multi-lingual applications
– Fortran, C, C++, external libraries (possibly binary only) with

thousands of procedures, hundreds of thousands of lines
– Avoid

– Manual instrumentation

– Significantly altering the build process

– Frequent recompilation

• Collect execution measurements scalably and efficiently
– Don’t excessively dilate or perturb execution

– Avoid large trace files for long running codes

• Support measurement and analysis of serial and parallel codes

• Present analysis results effectively
– Top down analysis to cope with complex programs
– Intuitive enough for physicists and engineers to use
– Detailed enough to meet the needs of compiler writers

• Support a wide range of computer platforms

HPCToolkit Sample Output

OProfile

● Oprofile is a statistical profiler put into
RedHat kernels and adopted by other Linux
vendors.

● Implementation is good for overall system
tuning, but useless for production
environments.

– No aggregate counter support

– Must be configured by root

– Non-existent API

TAU from U. Oregon

● Tuning and Analysis Utilities (11+ year
project effort)

● Integrated toolkit for parallel and serial
performance instrumentation, measurement,
analysis, and visualization

● Open software approach with technology
integration

● Robust timing and hardware performance
support using PAPI

● TAU supports both profiling and tracing
models.

Some TAU Features

● Function-level, block-level, statement-level
● Support for callgraph and callpath profiling

● Parallel profiling and Inter-process
communication events

● Supports user-defined events

● Trace merging and format conversion

TAU Instrumentation

● Flexible mechanisms:

– Source code both manual and automatic.
● C, C++, F77/90/95 (Program Database Toolkit

(PDT))
● OpenMP (directive rewriting (Opari), POMP

spec)

– Object code
● pre-instrumented libraries (e.g., MPI using

PMPI)

– Executable code
● dynamic instrumentation (pre-execution)

(DynInstAPI)

TAU Parallel Display

TAU Program Display

MPI Profiling

● How much time we are spending in
communication.

– Load balance

– Algorithm design

– Synchronization and scaling
● MPI tools to do this via the MPI profiling

interface.

– MpiP for aggregate statistics and call site
information.

– Jumpshot-4 for trace generation and
visualization.

MpiP: Lightweight MPI Profiling

● Trace generation of MPI calls is Heavyweight!
● Trace is generated but reduced at runtime

● Short text summary is generated at the end
of execution.

● Traces:

– MPI I/O

– Callsite and callstack (optional)

– Controlled scope with MPI_Pcontrol().

MpiP: Lightweight MPI Profiling

● MPIP is a lightweight, scalable profiling tool
for gathering timing information about MPI
applications

– Records cumulative time for each MPI callsite

– Tested up to 4,096 processors

– Output data size is time-invariant

– Timing information provides first order
approximation of performance problems

● Short text summary is generated at the end
of execution.

MpiP Tracing

● No large tracefiles or large perturbation on
application

● Traces:

– MPI 1 and MPI 2 Calls

– MPI I/O

– Callsite and callstack (optional)

– Controlled scope with MPI_Pcontrol().

MpiP v2.7 Output
@ Command : /afs/pdc.kth.se/home/m/mucci/mpiP-

2.7/testing/./sweep-ops-stack.exe

/tmp/SPnodes-mucci-0

@ Version : 2.7

@ MPIP Build date : Aug 17 2004, 17:04:36

@ Start time : 2004 08 17 17:08:48

@ Stop time : 2004 08 17 17:08:48

@ MPIP env var : [null]

@ Collector Rank : 0

@ Collector PID : 17412

@ Final Output Dir : .

@ MPI Task Assignment : 0 h05n05-e.pdc.kth.se

@ MPI Task Assignment : 1 h05n35-e.pdc.kth.se

@ MPI Task Assignment : 2 h05n05-e.pdc.kth.se

@ MPI Task Assignment : 3 h05n35-e.pdc.kth.se

@--- MPI Time (seconds)

Task AppTime MPITime MPI%

 0 0.084 0.0523 62.21

 1 0.0481 0.015 31.19

 2 0.087 0.0567 65.20

 3 0.0495 0.0149 29.98

 * 0.269 0.139 51.69

@--- Aggregate Time (top twenty, descending, milliseconds)

Call Site Time App% MPI%

Barrier 1 112 41.57 80.42

Recv 1 26.2 9.76 18.89

Allreduce 1 0.634 0.24 0.46

Bcast 1 0.3 0.11 0.22

Send 1 0.033 0.01 0.02

@--- Aggregate Sent Message Size (top twenty, descending,

bytes) ----------

Call Site Count Total Avrg

Sent%

Allreduce 1 8 4.8e+03 600

46.15

Bcast 1 8 4.8e+03 600

46.15

Send 1 2 800 400

7.69

MpiP v2.7 Output 2
--

@--- Callsite Time statistics (all, milliseconds): 16

--

Name Site Rank Count Max Mean

Min App% MPI%

Allreduce 1 0 2 0.105 0.087

0.069 0.21 0.33

Allreduce 1 1 2 0.118 0.08

0.042 0.33 1.07

Allreduce 1 2 2 0.11 0.078

0.046 0.18 0.27

Allreduce 1 3 2 0.102 0.072

0.042 0.29 0.97

Barrier 1 0 3 51.9 17.3

0.015 61.86 99.44

Barrier 1 1 3 0.073 0.0457

0.016 0.29 0.91

Barrier 1 2 3 54.9 18.8

0.031 64.90 99.53

Barrier 1 3 3 1.56 1.02

0.035 6.20 20.68

Bcast 1 0 2 0.073 0.0535

0.034 0.13 0.20

Bcast 1 1 2 0.037 0.023

0.009 0.10 0.31

Bcast 1 2 2 0.084 0.046

0.008 0.11 0.16

Bcast 1 3 2 0.03 0.0275

0.025 0.11 0.37

Recv 1 1 1 14.6 14.6

14.6 30.48 97.71

Recv 1 3 1 11.6 11.6

11.6 23.37 77.98

Send 1 0 1 0.013 0.013

0.013 0.02 0.02

Send 1 2 1 0.02 0.02

0.02 0.02 0.04

Send 1 * 32 54.9 4.34

0.008 51.69 100.00

--

@--- Callsite Message Sent statistics (all, sent bytes)

--

Name Site Rank Count Max Mean

 Min Sum

Allreduce 1 0 2 800 600

 400 1200

Allreduce 1 1 2 800 600

 400 1200

Allreduce 1 2 2 800 600

 400 1200

Allreduce 1 3 2 800 600

 400 1200

Bcast 1 0 2 800 600

 400 1200

Bcast 1 1 2 800 600

 400 1200

Bcast 1 2 2 800 600

 400 1200

Bcast 1 3 2 800 600

 400 1200

Send 1 0 1 400 400

 400 400

Send 1 2 1 400 400

 400 400

Send 1 * 18 800 577.8

 400 1.04e+04

--

@--- End of Report

--

Jumpshot: MPI Visualization
● If we need to see the exact sequence of

messages exchanged between processes.
● MPI tracing by relinking our application using

the Jumpshot MPE libraries that can be used
with any MPI.

● Jumpshot-3 included with MPICH 1.2.6.
● Jumpshot-4 is a separate release.

Jumpshot-3 Main Window

Jumpshot-3 Timeline

Performance Work at PDC
● Long History of Focus on Performance

– Early use of Hardware Counters on the SP2 in
Batch System for per CPU collection

● Collaboration with PAPI group from
ICL/University of Tennessee

– Work on Itanium 2, Opteron port and involved
in the design of PAPI 3

● Development of custom monitoring scripts
for the Itanium 2 cluster: “Lucidor”.

● Performance Analysis and Optimization
Workshop of 2003: Brought researchers in
the field from all around Scandinavia

Site Wide Performance
Monitoring at PDC

● Integrate complete job monitoring in the
batch system itself.

● Track every cluster, group, user, job, node all
the way down to individual threads.

● Zero overhead monitoring, no source code
modifications.

● Near 100% accuracy.

Site Wide Performance
Monitoring at PDC

● Allow performance characterization of all
aspects of a technical compute center:

– Application Workloads

– System Performance

– Resource Utilization
● Provide users, managers and administrators

with a quick and easy way to track and
visualize performance of their jobs/system.

● Complete integration from batch system to
database to PHP web interface.

● Motivated by work at PDC & NCSA.

The PDC System: Front End

● PDC Runs a modified EASY Scheduler.
● Easy runs a:

– Preamble/Postamble on the front end that
prepares the data directory and some state.

– Easy works by editing remote /etc/passwd.

– Reserved nodes get their real shell running
under 'papiex', a PSRUN like tool that uses
LD_PRELOAD to see everything.

– Data is dumped when processes exit into
private area.

The PDC System: Back End

● Perl scripts walk the data directory and insert
the data into a Postgres database using the
DBI interface.

● Interface is run on webserver with PHP
scripts and JPGraph.

PDC Performance Miner
Main Window

PDC Performance Miner
FP Ops by Job ID

PDC Performance Miner
L1 Miss Rate by User

PDC Performance Miner
IPC by Process for SweGrid

IO Track Goals

● Understand application I/O patterns in order
to:

– Direct optimization efforts for applications

– Direct system design and tuning

– Give a better understanding of I/O needs in
general

● Provide an infrastructure for automatic I/O
tuning

IO Track Overview

● IOtrack consists of three components:

– iowrap - A preloaded library that traps calls to
libc and creates log-files for each process.

– logread - A tool to analyze iowrap log-files.
(not yet finished)

– iotrack - A driver program.

Iowrap Internals

● iowrap traps I/O calls to libc using function
replacement.

– File descriptor creation/close:
● open/close/creat/dup/socket/accept/fcntl

– I/O on File descriptors:
● read/write/readv/writev/send/recv/sendto

recvfrom/lseek/sendmsg/recvmsg

– Stream I/O
● fopen/fclose/fdopen/fread/fwrite/fprintf/fscanf

● mmap-based I/O is not handled: If the user knows
enough to use mmap, we probably don't need to
help.

Logfile Format

● Currently ASCII, may change in the future.

0.607013:LIBRARY LOADED:pid 3082:ppid

 3738:process /usr/bin/head:args /etc/passwd

0.607375:OPEN:new fd 4:/etc/passwd

0.607444:READ:fd 4:request size 4096:I/O size 4096

0.607480:LSEEK:fd 4:offset -3356:whence -1:new pos 1

0.607663:CLOSE:fd 4

0.607714:CLOSE:fd 3

Data from Log File

● Size of I/Os
● Which files are accessed?

● Location of I/Os within files

● I/O tracing withing files

● Redundant operations

Performance Impact

● Not well characterized as of yet, but
generally depends on:

– The granularity of IO

– The amount of buffering performed in
IOTrack.

● Data without buffering using 'sob' filesystem
benchmark.

– 1% overhead on reading 10 128MB files with
32MB block size.

– 47% overhead on reading 16k 128kB files
with 4kB block size.

Gaussian03 C02 Data
test653

● Runtime is 31 minutes on 900Mhz Itanium2
● Profiling overhead was 3.5%

● 3 processes

– 29 executions of 15 binaries
● 180 opens on 13 files

● Essentially all I/O goes to $GAUSS_SCRDIR, a
temporary storage area on local disk

● Aggregate I/O is 14GB writes and 68GB reads

Gaussian03 C02 Data
test653

● Total # of read/write calls is 3.4M

● Average I/O write size is 23.7kB

● Average I/O read size is 25.4kB

● 90% writes are 16kB

● 33% reads are 18.75kB

● 33% reads are 12.5kB

● 33% reads are 37.5kB

IOTrack Information

● This is a work in progress!
● Developed as part of a SNIC project on

storage led by NSC.
● Code at http://www.pdc.kth.se/~pek/iotrack

● Contact:

– Per Ekman, pek@pdc.kth.se

– Philip J. Mucci, mucci@cs.utk.edu

Links

● PAPI

– http://icl.cs.utk.edu/projects/papi

– PerfCtr
● http://user.it.uu.se/~mikpe/linux/perfctr/2.6

– Perfmon
● http://www.hpl.hp.com/research/linux/perfmon

● IOTrack

– http://www.pdc.kth.se/~pek/iotrack
● HPCToolkit

– http://www.hipersoft.rice.edu/hpctoolkit

Links

● PerfSuite

– http://perfsuite.ncsa.uiuc.edu
● TAU

– http://www.cs.uoregon.edu/research/paracomp/tau/tautools

● MPIP

– http://www.llnl.gov/CASC/mpip
● Jumpshot-4

– http://www-unix.mcs.anl.gov/perfvis/software/viewers

Credits

● PDC

– http://www.pdc.kth.se
● ICL/UTK

– http://icl.cs.utk.edu
● Additional work on PDC Performance Miner:

– Daniel Ahlin, Johan Danielsson, Lars
Malinowski, Ulf Andersson, Nils Smeds

● Work funded in part by:

– US: DoE MICS, DoE SciDAC, NSF PACI Alliance

– Sweden: SNIC

