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Physiology

� Ions move in and out of heart
cells

� Ionic current heart muscle
contraction pumping heart

� Electrical activity inside heart is
measurable by
electrocardiogram (ECG)

� Numerical simulation - diagnos-
tic tool in future(?)



Electrocardiogram (ECG)

The first ECG was recorded on a dog in 1887 in London.



Electrocardiogram (ECG)

The first commercial ECG machine was built in 1911.



Electrocardiogram (ECG)

The lead positions were standardized in 1943.



Geometric modeling

MRI slides � continuous 3D model ( � computational
mesh)



Computational mesh

An example tetrahedral finite element mesh for the heart.



3D Snapshot #1



3D Snapshot #2



3D Snapshot #3



Mathematical model
The BiDomain Model in the heart—intracellular
space and extracellular space
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The ODE system

An example: the Winslow cell model.



Mathematical model (cont’d)

In the torso (T � Ω
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Computational challenges

� Advanced mathematical model

� Realistic 3D geometries (heart and torso)

� Anisotropic and inhomogeneous
conductivities

� Need high resolution in space and time

� Desired spatial resolution: 0 	2mm �

50 � 106 mesh points

� Desired temporal resolution: 0 	1ms �

10000time steps

� Number of degrees of freedom: e.g.,�

2 31
� � 50 � 106 per time step!



Numerical strategy

During each time step:

� Solve the ODE system ds

�

dt � F
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� Solve the two PDEs simultaneously
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Observations

� An ODE system (30 �50 degrees of freedom)
needs to be solved at each mesh point in the
heart

� The two PDEs are solved simultaneously by
a 2 � 2 block linear system

� The “scalability bottleneck” is the PDE part

� Objective: find a scalable preconditioner for
the block system solver!



Serial preconditioning

� I θ∆tAv 0
0 θ∆tAu

as preconditioner for

the 2 � 2 block system

� multigrid V-cycle for solving both
�

1 � 1

�

block
and

�

2 � 2

�

block

� new theory; scalable performance

No preconditioning With preconditioning

# unknowns # CG iters # CG iters

302,166 1999 15

1,552,283 4087 16



Parallelization
Partitioning H and Ω into subdomains; each
processor is responsible for a piece of H and a
piece of Ω



Parallelization (cont’d)
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Two subdomains per processor: Hi and Ti.



Parallelization (cont’d)

� Each processor only builds local
matrices/vectors needed by a subdomain

� No need for physical storage of global
matrices or vectors

� Solution of ODEs: embarrassingly parallel

� Solution of PDEs: parallel linear algebra
operations + parallel preconditioning

� MPI for communication, portable to any
parallel platform



Parallel preconditioner

� I θ∆tAv 0
0 θ∆tAu

as preconditioner

� Schwarz iteration (overlapping DD) for
solving

�

1 � 1

�

block

� Schwarz iteration (overlapping DD) for
solving

�

2 � 2

�

block

� Multigrid V-cycle as subdomain solver

� Coarse grid correction in Schwarz iteration



Parallel software

� Need flexibility in the software

� Plug-and-play of different cell models

� Plug-and-play of different components in
the linear solver

� Different types of element basis functions

� Programming inside Diffpack —
http://www.diffpack.com

� Object-oriented programming on high
levels

� Fortran-style programming on
computation-intensive levels



Numerical scalability

Solving the 2 � 2 block system:
# unknowns P � 2 P � 4 P � 8 P � 16 P � 32 P � 64

302,166 9 9 10 10 12

1,552,283 9 9 10 10 11 11

10,705,353 13 13 14

81,151,611 14 15 15

# CG iterations needed (residual reduction factor=104)

Unstructured 3D mesh: has up to 252,143,960
tetrahedra



Parallel scalability (I)

Measurements on a switch-based Linux cluster
using 1.3 GHz Itanium 2 processors,
inter-connected through a 1Gbit/s ethernet, 4GB
memory per node

# unknowns P 1 P 2 P 4 P 8 P 16

302,166 153.19 93.44 53.64 30.55 23.14

1,552,283 982.11 585.88 327.59 195.79 127.79

10,705,353 N/A N/A 2511.18 1534.65 952.51

Wall-clock time measurements of one time step



Parallel scalability (II)

Measurements on Origin 3800, R14000 600MHz
processors

# unknowns P 8 P 16 P 32

302,166 55.30 33.25 21.70

1,552,283 385.08 242.93 142.51

10,705,353 3406.51 2206.67 1197.09

Wall-clock time measurements of one time step



Remarks

� Improvements can be achieved in the
following aspects:

� Better load balance

� More efficient serial computations

� Overhead reduction (latency hiding)

� Storing full-scale simulation results will
require a lot of disk space:

� # mesh points: 5 � 107 (# values 108)

� # time steps: 2500

� Total disk space: 2 � 1012 bytes (at least)

� Should use a distributed storage
approach



Summary

� Large-scale parallel electro-cardiac
simulations require a scalable numerical and
parallelization strategy

� Sophisticated numerical techniques are
fundamental:

� Block preconditioning

� Schwarz iteration (overlapping DD)

� Multigrid subdomain solver

� Global coarse grid correction

� Linux-clusters can work as a suitable parallel
platform

� More work is needed for further improvement
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