Using Linux Clusters for Full-Scale Simulation of Cardiac Electrophysiology

Xing Cai Glenn Terje Lines

simula . research laboratory

& University of Oslo, Norway

LCSC'04, Oct. 19, 2004

Outline

- Cardiac physiology
- Mathematical model
- Computational challenges
- Numerical strategy and parallelization
- Results and future work

Physiology

- Ions move in and out of heart cells
- Ionic current ⇒ heart muscle contraction ⇒ pumping heart
- Electrical activity inside heart is measurable by electrocardiogram (ECG)
- Numerical simulation diagnostic tool in future(?)

Electrocardiogram (ECG)

The first ECG was recorded on a dog in 1887 in London.

Electrocardiogram (ECG)

The first commercial ECG machine was built in 1911.

Electrocardiogram (ECG)

The lead positions were standardized in 1943.

Geometric modeling

MRI slides \Rightarrow continuous 3D model (\Rightarrow computational mesh)

Computational mesh

An example tetrahedral finite element mesh for the heart.

3D Snapshot #1

3D Snapshot #2

3D Snapshot #3

Mathematical model

The BiDomain Model in the heart—intracellular space and extracellular space

$$\chi C_{\rm m} \frac{\partial v}{\partial t} + \chi I_{\rm ion} = \nabla \cdot (M_i \nabla v) + \nabla \cdot (M_i \nabla u_e)$$
$$0 = \nabla \cdot (M_i \nabla v) + \nabla \cdot ((M_i + M_e) \nabla u_e)$$

- Transmembrane potential: $v = u_i u_e$
- Extracellular potential: *u_e*
- Ionic current $I_{ion}(v, s)$ relies on ODEs

$$\frac{\mathrm{d}\mathbf{s}}{\mathrm{d}t} = \mathbf{F}(v, \mathbf{s})$$

The ODE system

```
\nabla \cdot (M_2 \nabla a_2) = 0
   at turns boundary:
           n \cdot (M_T \nabla w_T) = 0
       heart boundary;
    u - (M_i \nabla (u_i + \sigma)) = 0
         \mathbf{x} \cdot (M, \nabla(\mathbf{u}_t)) = \mathbf{n} \cdot (M_F \nabla(\mathbf{u}_F))
                          u_r = u_T
                 in heart:
        C_{in}\chi_{im}^{im} + \chi I_{im} = \nabla \cdot (M_i \nabla u_i) + \nabla \cdot (M_i \nabla v)
 \nabla \cdot ((M_i + M_r)\nabla u_r) = -\nabla \cdot (M_i \nabla v)
                               = - NATE ALLE
                       利用
                                  - Acat
                       d(Cel
                                           \frac{C_{Revent}}{V_{Revent}} = (I_{Ver} - I_{Look}) - \frac{V_{Revent}}{V_{Revent}} - I_{Revent} - \frac{V_{Revent}}{V_{Revent}}
                   (Citant)
                                 = -I_{Ac} + I_{c}
                  \frac{dCannil}{dt} = J_{try} - J_{tone} + J_{Tr} \cdot \frac{V_{true}}{V_{true}}
                                = \alpha_0(v)(1-g) - \beta_0(v)g for g = m, h, j, x, d, f
    with gating coefficients:
m_{ui}(v) = 0.52 \cdot (v + 47.13)/(1 - e^{-9.1 \cdot (v + 47.13)})
\beta_{\rm sh}(v) = 0.06 \cdot e^{-t/11}
                    0.135 \cdot e^{(89+v)/(-4.8)} if v < -40
m_b(n) = 1
                                                     otherwise
                     3.56 \cdot e^{0.076+} + 3.1 \cdot 10^3 \cdot e^{0.01+} If \tau < -40
(h_{1}(i)) = .
                     1/(0.13-(1+e<sup>(r+10.00)/(-11.1)</sup>)) otherwise
                     (-1.2714 \cdot 10^{5} \cdot e^{0.2434 \cdot x} - 3.474 \cdot 10^{-5} \cdot e^{-0.04000 \cdot x})
\alpha_{i}(v) =
                     2 4 40 10 10 10 10
                                                                                                   |f| = < -40
                                                                                                   otherwise
                     0.1212 \cdot e^{-0.01000 + i(1 + e^{-0.1176(s+40.14)})} if u < -40
\beta_j(v) = :
                    0.3 \cdot e^{-3.516 \pm 6^{-7} + f(1 + e^{-0.3 \cdot (e+3.0)})}
                                                                                    otherwise:
\alpha_{\nu}(v) = 7.19 \cdot 10^{-5} \cdot (v + 30) / (1 - e^{-0.148 \cdot (v + 30)})
\beta_v(v) = 1.31 \cdot 10^{-1} \cdot (v + 30)/(-1 + e^{0.0037 \cdot (v+30)})
u_d(v) = (0.035 \cdot (v + 10))/(1 - e^{-(v+10)/0.24})
 \beta_d(v) = (a_d \cdot e^{-iv + 10)/0.24}
\alpha_l(v) = f_m/f_r
 \beta_{f}(v) = (1 - f_{-})/fr
```

in torest

 $f_{\infty}(e) = 1f(1 + e^{i(u+34,00)/0.8/3}) + 0.0/(1 + e^{i90-u)/20})$ $f_{\pm}(v) = 1/(0.0197 \cdot e^{-30.0217 \cdot (v+10)/2} + 0.02)$

and currents given as

 $I_{im} = I_{minm} + I_{minm} + I_{cunm}$ $I_{Na,Nat} = I_{Na} + 3I_{NaCa} + 3I_{Nab} + I_{na,Na} + I_{Nab} + I_{CaNa}$ $I_{\rm K, 101} = I_{\rm K} + I_{\rm K1} + I_{\rm K1} - 2I_{\rm NaK} + I_{\rm 10,K} + I_{\rm CaK}$ $I_{Ca,M} = I_{Ca} - 2I_{NaCa} + I_{p(Ca)} + I_{Ca,h}$ $I_{Nn} = \overline{G}_{Nn} \cdot m^3 \cdot h \cdot j \cdot (v - E_{Nn})$ Ica = d.f.fca.Tca $l_{COND} = d \cdot f \cdot f_{Ca} \cdot T_{Ca} N_{a}$ Ican = d.I.Ica Tean $b_K = \overline{G}_K \cdot X_1 \cdot x^2 \cdot (x - E_K)$ $I_{K1} = \widetilde{G}_{K1} \cdot K \mathbf{1}_m \cdot (v - E_{K1})$ $I_{Kp} = \widetilde{G}_{Kp} \cdot Kp \cdot (e - E_{K1})$ $I_{NaCa} = k_{NaCa} \cdot (1/(K_{ca}^3 N_A + [Na]^3))$ $I_{NaK^+} = -\overline{I}_{NaK^+} f_{NaK^-} (1/(1 + (K_m, N_{da}/[Na]_d)^{1.5})) + ([K]_o/([K]_o + K_m, \kappa_o))$ $I_{in,Nn} = \overline{I}_{n,Nn}/[1 + (K_{m,net,ni}/[Ca]_i)^n]$ $I_{ha,W} = \overline{I}_{m,W} / [1 + (K_{m,ha}(C_{h})/[C_{d}]_{i})^{3}]$ $I_{p(C_{4})} = I_{p(C_{4})} \cdot ([Ca]_{i} f(K_{m,p(C_{4})} + (Ca]_{i})), I_{p(C_{4})} = 1.15, K_{m,p(C_{4})} = 0.5$ $I_{Ca,b} = \overline{G}_{Ca,b} \cdot (v - E_{Ca,N})$ $I_{Na,b} = \overline{G}_{Na,b} \cdot (v - E_{Na}), \ \overline{G}_{Na,b} = 0.00141$ $I_{cg} = I_{up} \cdot \frac{|Ca|}{|Ca| + K_{u,lin}}$ $I_{true} = K_{true} - [Ca]_{min}, K_{true} = I_{ap}/[Ca]_{min}$ $I_{11} = ([Ca]_{min} - [Ca]_{min})/\tau_{e_1}$ $I_{hal} = G_{hal} \cdot ([C6]_{see} - [Ca])$ $\overline{G}_{\alpha, \nu} \cdot \frac{2(Ca)_{\alpha} - \Delta(Ca)_{\alpha}}{\mathbf{K}_{\alpha, \alpha, \alpha} + \Delta(Ca)_{\alpha} - \Delta(Ca)_{\alpha}} (1 - e^{-t/\tau_{\alpha}}) \cdot e^{-t/\tau_{\alpha}} \quad \text{if } \Delta[Ca]_{0} > \Delta[Ca]_{\alpha}$ $G_{Bel} =$ otherwise

An example: the Winslow cell model.

Mathematical model (cont'd)

In the torso $(T = \Omega \setminus H)$:

 $-\nabla \cdot (M_o \nabla u_o) = 0.$

Boundary conditions:

on
$$\partial H$$
: $M_i \frac{\partial}{\partial n} (v + u_e) = 0$, $u_e = u_o$, $M_e \frac{\partial u_e}{\partial n} - M_o \frac{\partial u_o}{\partial n} = 0$.

on
$$\partial T$$
: $M_o \frac{\partial u_o}{\partial n} = 0.$

Computational challenges

- Advanced mathematical model
- Realistic 3D geometries (heart and torso)
- Anisotropic and inhomogeneous conductivities
- Need high resolution in space and time
 - Desired spatial resolution: 0.2mm \sim 50×10^{6} mesh points
 - Desired temporal resolution: $0.1 \text{ms} \sim 10000 \text{ time steps}$
 - Number of degrees of freedom: e.g.,
 (2+31) × 50 × 10⁶ per time step!

Numerical strategy

During each time step:

- Solve the ODE system $ds/dt = F(v^{l-1}, s)$
- Solve the two PDEs simultaneously

$$\chi C_{\rm m} \frac{v^l - \tilde{v}^{l-1}}{\Delta t} + \chi I_{\rm ion} = \nabla \cdot (M_i \nabla v^l) + \nabla \cdot (M_i \nabla u_e^l)$$
$$0 = \nabla \cdot (M_i \nabla v^l) + \nabla \cdot ((M_i + M_e) \nabla u_e^l)$$

• 2 × 2 block linear system:

$$\begin{bmatrix} \mathbf{I} + \theta \Delta t \mathbf{A}_{v} & \theta \Delta t \mathbf{A}_{v} \\ \theta \Delta t \mathbf{A}_{v} & \theta \Delta t \mathbf{A}_{u} \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix}$$

Observations

- An ODE system (30~50 degrees of freedom) needs to be solved at *each* mesh point in the heart
- The two PDEs are solved simultaneously by a 2×2 block linear system
- The "scalability bottleneck" is the PDE part
- Objective: find a scalable preconditioner for the block system solver!

Serial preconditioning

- $\begin{bmatrix} \mathbf{I} + \theta \Delta t \mathbf{A}_{v} & \mathbf{0} \\ \mathbf{0} & \theta \Delta t \mathbf{A}_{u} \end{bmatrix}$ as preconditioner for the 2 × 2 block system
- multigrid V-cycle for solving both (1,1) block and (2,2) block
- new theory; scalable performance

	No preconditioning	With preconditioning	
# unknowns	# CG iters	# CG iters	
302,166	1999	15	
1,552,283	4087	16	

Parallelization

Partitioning *H* and Ω into subdomains; each processor is responsible for a piece of *H* and a piece of Ω

Parallelization (cont'd)

Two subdomains per processor: H_i and T_i .

Parallelization (cont'd)

- Each processor only builds local matrices/vectors needed by a subdomain
- No need for physical storage of global matrices or vectors
- Solution of ODEs: embarrassingly parallel
- Solution of PDEs: parallel linear algebra operations + parallel preconditioning
- MPI for communication, portable to any parallel platform

Parallel preconditioner

- $\begin{bmatrix} \mathbf{I} + \theta \Delta t \mathbf{A}_{v} & \mathbf{0} \\ \mathbf{0} & \theta \Delta t \mathbf{A}_{u} \end{bmatrix}$ as preconditioner
- Schwarz iteration (overlapping DD) for solving (1,1) block
- Schwarz iteration (overlapping DD) for solving (2,2) block
- Multigrid V-cycle as subdomain solver
- Coarse grid correction in Schwarz iteration

Parallel software

- Need flexibility in the software
 - Plug-and-play of different cell models
 - Plug-and-play of different components in the linear solver
 - Different types of element basis functions
- Programming inside Diffpack http://www.diffpack.com
 - Object-oriented programming on high levels
 - Fortran-style programming on computation-intensive levels

Numerical scalability

Solving the 2×2 block system: # unknowns P = 2 P = 4P = 16P = 32P=8P = 64302,166 9 10 9 10 12 1,552,283 9 9 10 10 11 11 10,705,353 13 13 14 81,151,611 15 14 15

CG iterations needed (residual reduction factor= 10^4)

Unstructured 3D mesh: has up to 252,143,960 tetrahedra

Parallel scalability (I)

Measurements on a switch-based Linux cluster using 1.3 GHz Itanium 2 processors, inter-connected through a 1Gbit/s ethernet, 4GB memory per node

# unknowns	P=1	P=2	P = 4	P=8	P = 16
302,166	153.19	93.44	53.64	30.55	23.14
1,552,283	982.11	585.88	327.59	195.79	127.79
10,705,353	N/A	N/A	2511.18	1534.65	952.51

Wall-clock time measurements of one time step

Parallel scalability (II)

Measurements on Origin 3800, R14000 600MHz processors

# unknowns	P=8	P = 16	P = 32
302,166	55.30	33.25	21.70
1,552,283	385.08	242.93	142.51
10,705,353	3406.51	2206.67	1197.09

Wall-clock time measurements of one time step

Remarks

- Improvements can be achieved in the following aspects:
 - Better load balance
 - More efficient serial computations
 - Overhead reduction (latency hiding)
- Storing full-scale simulation results will require a lot of disk space:
 - # mesh points: 5×10^7 (# values 10^8)
 - # time steps: 2500
 - Total disk space: 2×10^{12} bytes (at least)
 - Should use a distributed storage approach

Summary

- Large-scale parallel electro-cardiac simulations require a scalable numerical and parallelization strategy
- Sophisticated numerical techniques are fundamental:
 - Block preconditioning
 - Schwarz iteration (overlapping DD)
 - Multigrid subdomain solver
 - Global coarse grid correction
- Linux-clusters can work as a suitable parallel platform
- More work is needed for further improvement