
Linux on NUMA architecturesLinux on NUMA architectures

4th Annual Workshop on Linux Clusters for
Super Computing

Linköping, October 22-24, 2003

Jes Sorensen
Wild Open Source

jes@wildopensource.com
http://www.wildopensource.com/

AgendaAgenda

● Why should we care about NUMA?
● NUMA architecture background
● Common NUMA problems and how they

compare to SMP
● NUMA alternatives
● Q&A

Why this NUMA thing?Why this NUMA thing?

● Why care about NUMA? aren't clusters much
better for the job?

● One big NUMA box allows RAM sharing, major
benefit with large datasets

● AMD64/Opteron systems are NUMA even for
small SMP systems HyperThreading

● NUMA optimizations ruins performance for
UP/SMP systems

● A few may be radical, however most cases are
actually a benefit for all 2+ CPU systems

NUMA 101NUMA 101

● Local to each node:
● CPU(s)
● RAM
● I/O (PCI)
● Interconnect

● Between nodes:
● Hypertransport,

NUMAFlex, etc.
● Node-to-node

connections / routed

CPU I/OCPU

ROUTINGRAMNODE

CPU I/OCPU

ROUTINGRAMNODE

I
N
T
E
R
C
O
N
N
E
C
T

More NUMAMore NUMA

● Advanced NUMA configurations use routers
to limit distance between nodes

● Access to memory can be multiple hops away,
increasing latency!

● Some systems have dedicated I/O and/or
memory nodes

● Depending on platform, CPU nodes can
contain one or more CPUs

Memory & AllocationMemory & Allocation

● To avoid unncessary remote memory access,
kernel memory allocator must allocate mem-
ory on task's node (unless requested other-
wise)

● Scheduler should prioritize CPUs on same
node as task was previously run on

● Memory allocation and schduling on non-
NUMA systems can be treated as 1-node
systems (allows for simplifications at
compile time)

Kernel Internal IssuesKernel Internal Issues

● All data structures frequently used for write
must be cache line aligned

● Cost of cache-line ping-pongs between nodes often
2-3+ times higher than on regular SMP

● Atomic operations cause atomic bus
operations across interconnect:

● gettimeofday() performance > 2x by eliminating
atomic operation in gettimeoffset()

● Replication of kernel text segment in RAM
on each node

SchedulingScheduling

● Node aware scheduling
● Node-affinity rather than CPU-affinity API

required for userland (tasks/threads sharing
datasets)

Spin Locks and other goodiesSpin Locks and other goodies

● Linux spin locks very simple and fast, no
exponential backoff

● CPUs on remote nodes have higher latency to
reach lock memory

● read/write locks suffer from exponential
fairness problem when number of CPUs grow
(alternative: read-copy-update – RCU)

PCI I/OPCI I/O

● DMA cache coherent as per spec!
● MMIO read/write operations stalls during

DMA transactions
● DMA transactions between nodes have high latency
● NUMA hardware vendors often cheat and violate

spec by allowing read/write to by-pass in-flight
DMA

● Compensate at device driver level (must be
transparant to avoid custom device drivers for
NUMA)

libnumalibnuma

● Export topology information to applications
● Node-affinity (CPU memsets)
● Node-aware memory allocation

Questions?Questions?

● Linux and NUMA?
● Linux kernel issues?
● Linux ia64?
● Anything!

