

The LHC Computing Challenge

Preparing the computing solutions for the Large Hadron Collider at CERN

Sverre Jarp, IT Division, CERN

High Energy Physics Computing Characteristics

- Independent events (collisions of particles)
 - trivial (read: pleasant) parallel processing
- Bulk of the data is read-only
 - versions rather than updates
- Meta-data in databases linking to "flat" files
- Compute power measured in SPECint (not SPECfp)
 - But good floating-point is important
- Very large aggregate requirements:
 - computation, data, input/output
- Chaotic workload
 - research environment physics extracted by iterative analysis, collaborating groups of physicists
 - → Unpredictable → unlimited demand

SHIFT architecture

(Scalable Heterogeneous Integrated Facility)

In 2001 SHIFT won the 21st Century Achievement Award issued by Computerworld

CERN's Computing Environment (today)

- Highthroughput computing (based on reliable "commodity" technology)
 - More than
 1500 (dual processor) PCs with Red Hat Linux
 - About 3
 Petabytes of data (on disk and tapes)

IDE Disk servers

Cost-effective disk storage: ~10 CHF/GB

The LHC Challenge

The Large Hadron Collider (LHC) has 4 Detectors:

LHC Computing Plan

- 1 Build the "fabric"
- 2 Interconnect sites in a Grid

The LHC Data Grid Hierarchy

Current sites in LCG-1

CERN openlab

openlab: The technology focus of CERN/IT

Industrial Collaboration:

- Enterasys, HP, IBM, and Intel are our partners
- Stop Press: ORACLE just joined
- Technology aimed at the LHC era:
 - Network switches at 10 Gigabits
 - 41 rack-mounted HP servers
 - 82 Itanium-2 processors
 - StorageTank storage system

Itanium cluster in detail

Software integration:

- 32 nodes + development nodes
- Fully automated kickstart installation
- Red Hat Advanced Workstation 2.1
- OpenAFS 1.2.7, LSF 5.1
- GNU, Intel, ORC Compilers
 - ORC (Open Research Compiler, used to belong to SGI)
- CERN middleware: Castor data mgmt
- CERN Applications
 - Porting, Benchmarking, Performance improvements
- Database software
 - Oracle 10g

Program porting status

Ported to 64-bits:

- Castor (data management subsystem)
 - GPL. Certified by authors.
- ROOT (C++ data analysis framework)
 - Own license. Binaries both via gcc and ecc. Certified by authors.
- CLHEP (class library for HEP)
 - GPL. Certified by maintainers.
- GEANT4 (C++ Detector simulation toolkit)
 - Own license. Certified by authors.
- CERNLIB (all of CERN's FORTRAN software)
 - GPL. In test.
 - Zebra memory banks are I*4
- ALIROOT (entire ALICE framework)

Being ported:

- LCG software from VDT/EDG
 - GPL-like license.

opencluster

Current planning:

- Cluster evolution:
 - Late 2003: Move to 64 nodes (with "Madison" @ 1.5 GHz)
 - Two more racks
 - 2004: Possibly 128 nodes, next generation processors
- Redo all relevant tests
 - Application benchmarks
 - Also: New compiler versions
 - Network challenges
 - Scalability tests
- Other items
 - Infiniband tests
 - Serial-ATA disks w/RAID

Make the cluster available to all relevant LHC Data Challenges:
Alice "online" currently using 24 nodes

PROOF Scalability

(Presented at CHEP2003)

Enterasys 2Q 2003

Status of 10 GbE challenge

Successful back-to-back tests:

- Peak of 523 MB/s with 12 streams
 - Without ANY tuning
- Peak of 755 MB/s single stream
 - With intensive tuning
- 10 km fibers used
- Current limitation is the PCI-X bus
 - Absolute maximum thought to be 800 MB/s
- Good validation of Intel NICs, HP chipset (zx1) and PCI-X bus

Also: testing with IA-32 Xeon 2.4 GHz

IPv4 record setup: 5.44 Gbps

Internet2 Landspeed Record

(category TCP/IPv4 single stream)

Established on October 1 2003 by Caltech and CERN within the DataTAG project framework, using iperf 7'067 Km of network: Geneva-Chicago

5.44 Gbits/sec (1.1 Terabyte of data transferred in 26 minutes)

Results: 38'420.54 Terabit-meters/second

Hardware

Chicago: Dual Intel® Xeon™ processors, 3.06GHz, 2 GB RAM

SuperMicro X5DPE Motherboard (Intel E7501 chipset)

Geneva: HP RX2600, Dual Itanium2 1.5GHz, 4GB RAM

10 GbE interfaces: Intel Pro/10 GbE-LR

Software & Setup

Standard Linux (Kernel 2.6.0-test5) MTU set to ~9000 bytes

7

'IBM StorageTank plans

- Storage Tank file system initial usage tests
- Establish a set of standard performance marks
 - raw disk speed
 - disk speed through iSCSI
 - file transfer speed through iSCSI & Storage Tank
- Storage Tank replacing Castor disk servers ?
 - Tape servers reading/writing directly from/to Storage Tank file system
- "CMS" challenge:
 - random access @ 400 MB/s on a 100 GB data set, from some 200 servers.

Opencluster and the Grid

- VDT 1.8 installed (contains Globus 2.2.4)
 - Native 64 bit version
 - First tests with Globus + LSF have begun
- Active porting of EDG 2.0 software started
- Joint project with CMS
 - Integrate opencluster alongside EDG testbed
 - Porting, Verification
 - Relevant software packages (hundreds of RPMs)
 - Understand chain of prerequisites
 - Exploit possibility to leave control node as IA-32
- Interoperability with LCG-1 testbeds
- Integration into existing authentication and virtual organization schemes
- GRID benchmarks
 - To be defined
 - Certain scalability tests already in existence

CERN

October 2003

Sverre larn

CERN"Where the Web was born..."®

