

Some Experiences of Linux Clusters for Applications in Non-linear Solid Mechanics

Larsgunnar Nilsson

Linköping University and Engineering Research Nordic AB

larni@erab.se

Object

- The objects of my presentation are:
 - To motivate and illustrate the need for HPC, in particular parallel computing, in the field of nonlinear mechanics.
 - To show some benchmark results and discuss three years experience from Beowulf clusters.

Outline

- Background
- Design optimization
 - General
 - Gradient based optimization
 - RSM
 - Examples of application
- Beowulf cluster
- VDI/Audi benchmark
- Conclusions

Motivation

- The use of Simulation Based Design (SBD) in industry increases rapidly:
 - more detailed models
 - more design parameters being investigated
 - design optimization

Cases:

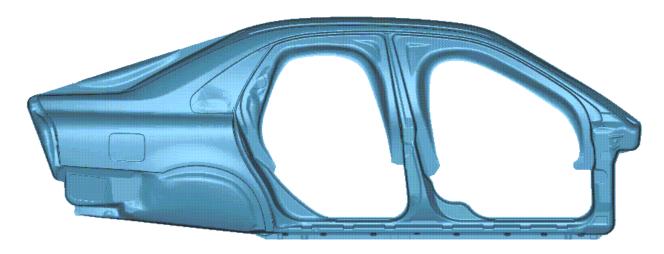
- Metal forming simulation of complete car side body panel requiring 1,200,000 shell elements (VOLVO Car Corp)
- Design optimization of 30,000 shell element car structure, requiring 20 + 130 runs (SAAB Automobile)

VOLVO S80 Body panel Sheet metal forming simulation

Solid Mechanics

1.200.000 shell elements

7.200.000 degrees of freedom

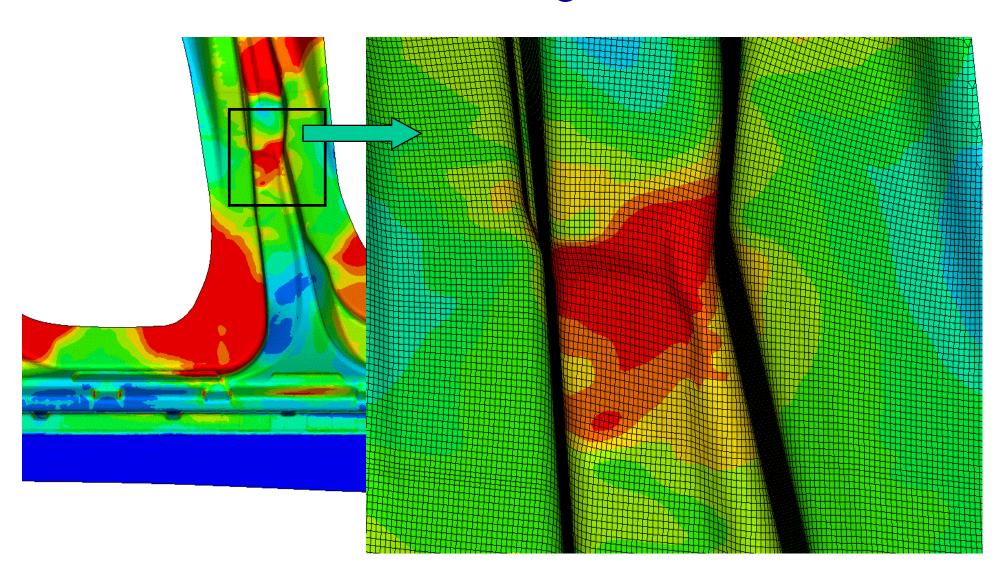


IBM SP2 32 proc 77.0 h

IBM SP 104 proc 13.5 h

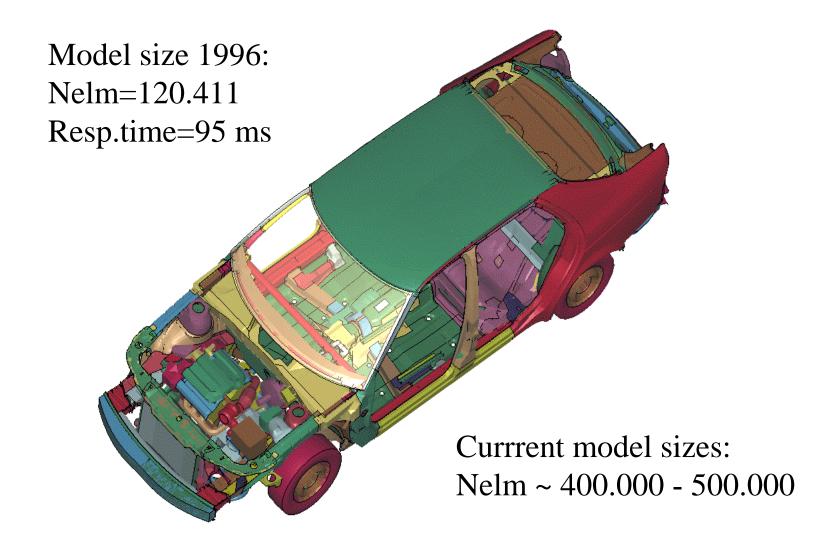
VOLVO S80 Body panel Sheet metal forming simulation

Solid Mechanics



Saab 9⁵ frontal crash

Solid Mechanics



Saab 9⁵ frontal crash Occupant crashworthiness

Design Optimization

What is Design Optimization?

- •Conventional Approach Propose a design, compute the response and then make <u>design</u> changes to comply with safety criteria or improve efficiency. Improvement of the design may be partially <u>rational</u>, partially <u>intuitive</u>.
- •<u>Design Optimization</u> <u>Parameterize</u> the design problem. Develop simple <u>design rules</u> within a <u>practical range</u>. Cast the design rules in an Optimization Problem and solve to find a <u>'better'</u> design. <u>Repeat</u> systematically until measure(s) of 'goodness' of the design cannot be further improved.

Problem Statement: Constrained Minimization


```
min f(x)

subject to

g_j(x) \le 0; j = 1, 2, ..., m
```

f: cost or objective function

g: constraint function

x: design variables (parameters)

Design Formulation Quantities to identify

- Design variables
- Design parameters which can be changed e.g. size or shape

 $\boldsymbol{x} = \{x_1, x_2, x_3, ..., x_n\}$

- Design objectives
- A measure of goodness of the design, e.g. cost, weight, lifetime $\min p[f_i(\boldsymbol{x})]$; i = 1, 2, 3, ..., N
- Design constraints
- Limits on the design, e.g. strength, intrusion, deceleration
- $L_j \le g_j(\mathbf{x}) \le U_j$; j = 1, 2, 3, ..., m

Karush-Kuhn-Tucker conditions

$$\nabla f(x^*) + \lambda^T \nabla g(x^*) = \mathbf{0}$$
$$\lambda^T g(x^*) = 0$$
$$g(x^*) \leq \mathbf{0}$$
$$\lambda \geq \mathbf{0}.$$

Gradient Computation

Gradient based optimization <u>algorithms</u> require gradient computation

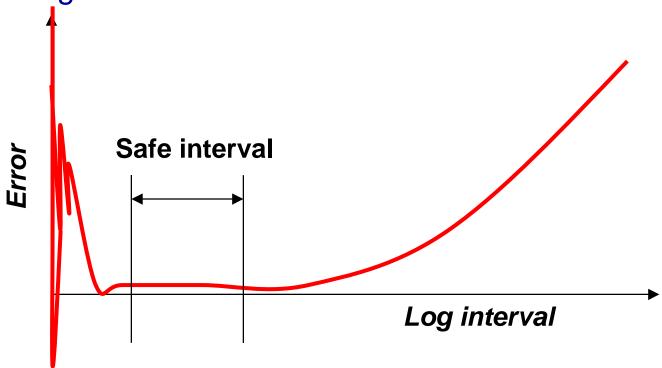
$$\frac{\mathrm{d}f}{\mathrm{d}x}$$
 $\frac{\mathrm{d}\boldsymbol{g}}{\mathrm{d}x}$

Gradients are

- Analytical: Derivatives are formulated explicitly and implemented into the code. Complicated.
- Numerical: Design is perturbed and (n+1) analyses are simulated. Simple but expensive and error prone.
- Semi-Analytical: Partly numerical, partly analytical (chain rule)

Numerical gradients: accuracy

- Accuracy.
- If the perturbation interval is too large, lose accuracy
- If the perturbation interval is too small, find spurious gradients

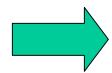


Causes of spurious derivatives

- Spurious derivatives computed using small intervals are due to:
- Chaotic structural behavior.
 Especially in crash analysis.
- Adaptive mesh refinement.
 Different designs have different meshes.
- Numerical Round-off error.
 Usually single precision computations.

Design Environment

- Non-linear behavior and adaptivity.
- Noisy response.
- Analytical design sensitivities not available



Optimization algorithms directly based on gradients are infeasible!

Approximations Local and Global

Local

- Design Sensitivity Analysis (DSA)
 - Analytical: Formulate and implement the derivatives
 - Numerical: Perturb the design. Uses n+1 simulations

Global

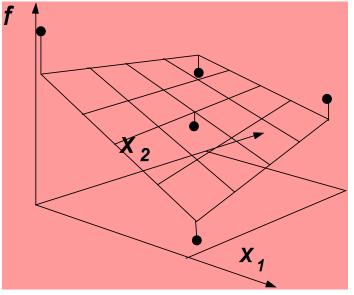
- Response Surface Methodology (RSM) [Box and Draper (1959)]
- Neural Networks (non-linear regression), Radial basis functions (linear regression)
- Gaussian processes (Kriging non-parametric regression)

Response Surface Methodology

- Creates design rules based on global approximations
- Does not require <u>analytical sensitivity analysis</u>
- Smoothes the design response and stabilizes numerical sensitivities
- Accurate design surfaces in a sub-region allow for inexpensive exploration of the design space (e.g. sensitivity analysis, multi-objective design) without further function evaluation. Trade-off curves developed interactively.

How does it work?

 Design surfaces (f and g) are fitted through points in the design space to form approximate optimization problem



The idea is to find the surfaces with the best predictive capability

Approximating the response

$$y = \eta(x)$$
.

The exact relationship is approximated as

$$\eta(x) \approx f(x)$$
.

The approximating function f is:

$$f(x) = \sum_{i=1}^{L} a_i \phi_i(x)$$

where L is the number of basis functions ϕ_i used to approximate the model.

Approximating the response

Sum of the square error:

$$\sum_{p=1}^{P} \{ [y(x) - f(x)]^2 \} = \sum_{p=1}^{P} \{ [y(x) - \sum_{i=1}^{L} a_i \phi_i(x)]^2 \}.$$

P: number of experimental points y is the exact functional response at the experimental points x_i .

Approximating the response

The solution:

$$a = (X^T X)^{-1} X^T y$$

where X is the matrix

$$X = [X_{ui}] = [\phi_i(x_u)].$$

Choose appropriate basis functions, e.g.

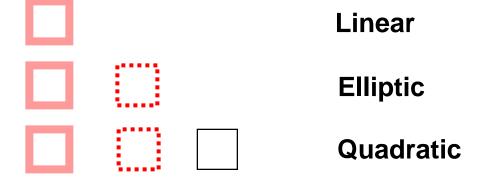
$$\phi = [1, x_1, \dots, x_n, x_1^2, x_1 x_2, \dots, x_1 x_n, \dots, x_n^2]^T$$

Approximation models

Solid Mechanics

$$\begin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}$$

$$\begin{bmatrix} x_1^2 & x_1 x_2 & \dots & x_1 x_n \\ x_2 x_1 & x_2^2 & \dots & x_2 x_n \\ \vdots & \vdots & \dots & \vdots \\ x_n x_1 & x_n x_2 & \dots & x_n^2 \end{bmatrix}$$



Approximations

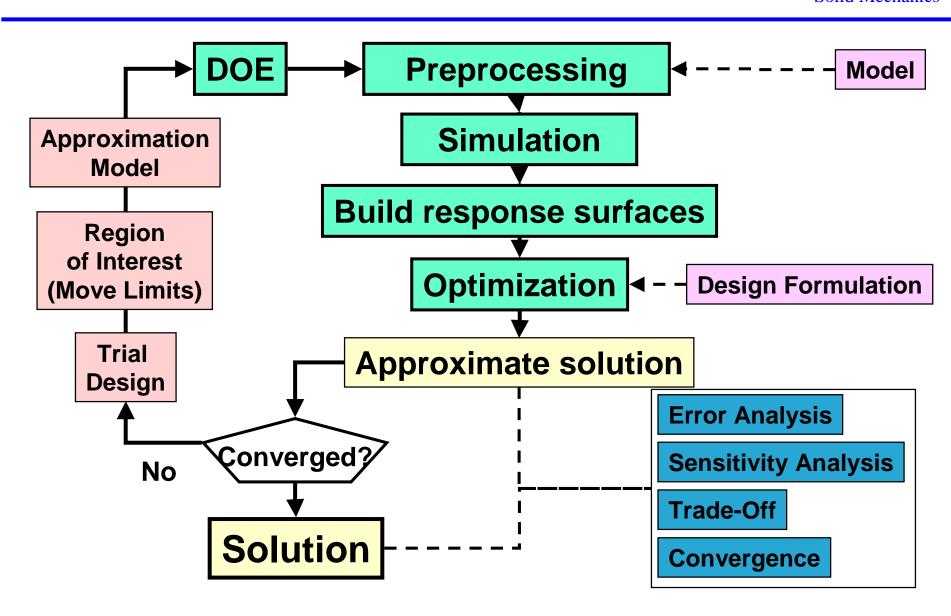
- First order approximations
 - Inexpensive.

Cost ~ n

- Cycling (oscillation) can occur. Successfully addressed by adaptive optimization algorithm
- Robust iterative method
- Second order approximations
 - More expensive. Full <u>Quadratic</u>: Cost ~ n-squared
 - Elliptical approximation: Cost ~ 2n
 - More accurate. Good for trade-off studies.
- Linear Approximation is recommended

The Optimization Process

Solid Mechanics

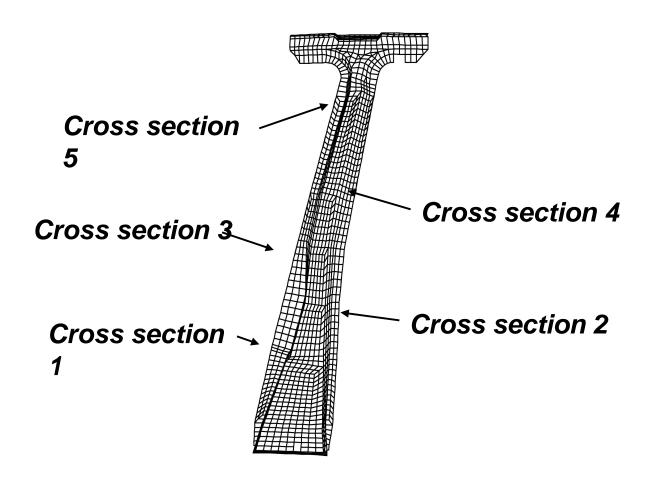


Optimization of a car body component subjected to side impact

Saab 9⁵ frontal crash Occupant crashworthiness

Parametric B-pillar.

Totally 11 design parameters



Saab 9⁵ side impact model

Solid Mechanics



B-pillar weight optimization

Minimize

Mass (x)

subjected to the constraints:

$$V_{top}(x_i) \le V_{top}^{orig}$$

$$v_{mid}(x_i) \leq v_{mid}^{orig}$$

$$V_{bo}(x_i) \leq V_{bot}^{orig}$$

With design variables intervalls: $\chi^{min} < \chi < \chi^{max}$

Linear response surfaces

11 design parameters:

- Full factorial design
 - $-2^{11} = 2048$ design points
- Koshal design
 - 11+1=12 design points
- D-optimal design
 - Using $(11+1)*1.5 \cong 20$ design point
 - Plus 5 check points

Quadratic response surfaces

11 design parameters

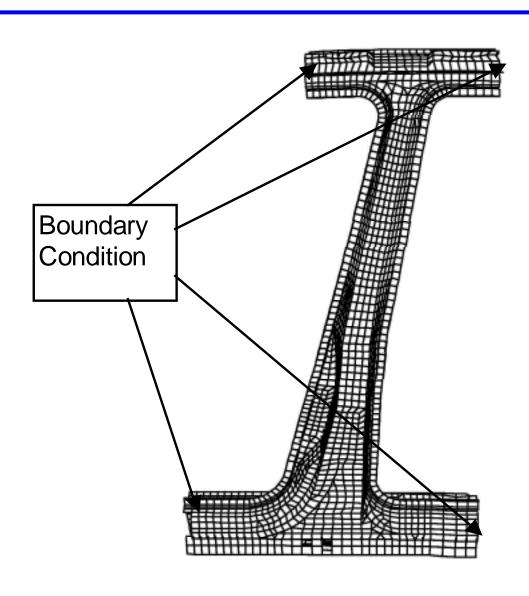
- Full factorial design
 - $-3^{11} = 177,147$ design points
- Koshal design
 - (11+1)*(11+2)/2 = 78 design points
- D-optimal design
 - Using $78*1.5 \cong 120$ design point
 - Plus 10 check points

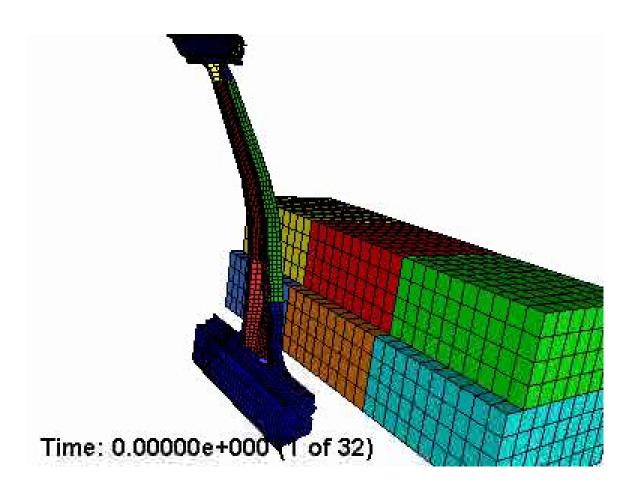
Model idealization

- Side impact with full car model
 - Each LS-DYNA run takes about 22 hours
- Reduced model; side impact on B-pillar
 - Each LS-DYNA run takes about 5 hours
 - Boundary conditions on interfaces to roof and door sill from side impact on full car model (original design).
 "Re-analysis"

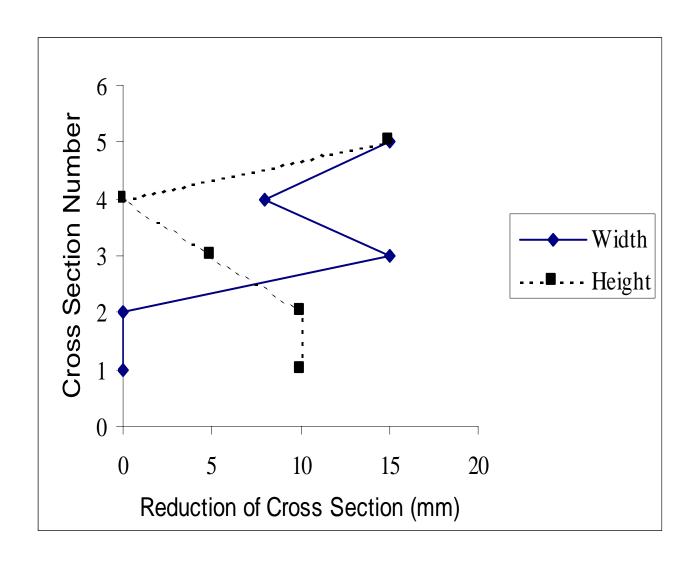
Boundary conditions for B-pillar

Solid Mechanics





Design parameters at optimum



Weight reduction summary

	Change
Reduced section	-1,9 kg/car
Part reduction	-1,6 kg/car
Total weight red.	-3,5 kg/car About 25%

Surrogate models and Space Mapping

Space Mapping

Mapping

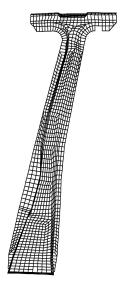
Solid Mechanics

Original "costly" model

- + Detailed
- +Accurate
- Slow
- Costly

Surrogate model

- + Fast
- + Less costly
- Less accurate

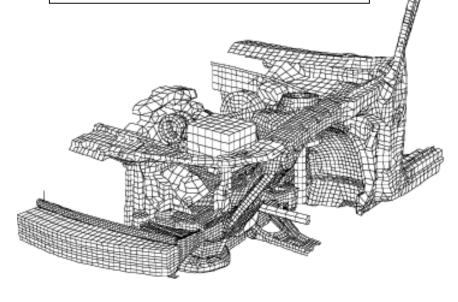


Carbody, frontal structure

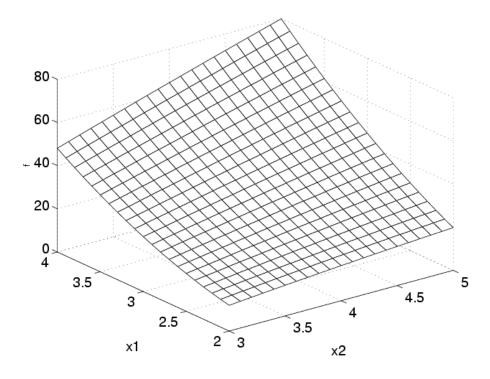
Solid Mechanics

4 design parameters, Quadratic response surfaces => 23 runs

Fine model
CPU=10 h (SMP)
CPU=1.5 h (MPP 8 p)



Surrogate model CPU=0 h



CPU=10 h *23=230h Total=230/8~30h

Example – Frontal crash

a1=mean(acc), 0<t<20 ms

max (initial acceleration (a1)) $intrusion < a_{ref} = 72.2 mm$ $stop\ time > t_{ref} = 78.3\ ms$ $acc_{max} < a_{ref} = 624 \text{ m/s}^2$ $1.4 \ mm < t_1 < 2.0 \ mm$ $1.5 \ mm < t_2 < 2.0 \ mm$ $1.2 \text{ } mm < t_3 < 1.8 \text{ } mm$ $180 \, MPa < \sigma_v < 420 \, MPa$

Design parameters:
3 thicknesses
1 material property

Space Mapping - Frontal crash

Table 4.5: Optimization results of the vehicle model using space mapping

	a1	stop time	intrusion	maximum acceleration
Start point	155.0	0.078	0.072	624
Iteration 1	166.6	0.067	0.056	607
Iteration 2	172.2	0.079	0.081	529
Iteration 3	170.7	0.079	0.074	484
Iteration 4	174.0	0.079	0.073	386
Iteration 5	177.6	0.079	0.072	510
Iteration 6	171.5	0.079	0.072	440
Optimum point	171.8	0.079	0.067	540

Space Mapping – Frontal crash

7.3 speed-up on 8 proc

LS-DYNA performance on Linux cluster

HPC future ...

- The increase in single processor performance will slow down
- Most HPC will be based on parallel computing
- Most mpp's will be based on mainstream processors
- The Beowulf "supercomputer" is the "poor-man's" choice
- mpp/LS-DYNA offers very good performance

Linux environment

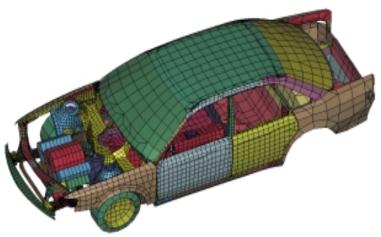
- Operating system Red Hat Linux 7.0
- Message Passing Interface (MPI), MPIch and LAM
- Portable Batch System (PBS)
- mpp/LS-DYNA 940.02 and 960

mpp/LS-DYNA

- Domain decomposition
 - RCB, RSB, Greedy
- Single Program Multiple Data (SPMD)
- Message Passing using MPI
- Linux versions available
 - MPIch and LAM

VDI Audi frontal crash

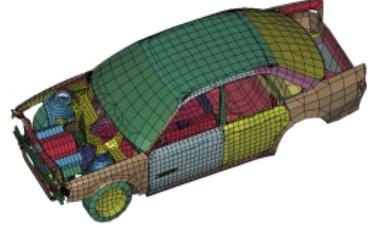
Solid Mechanics



shells = 28007

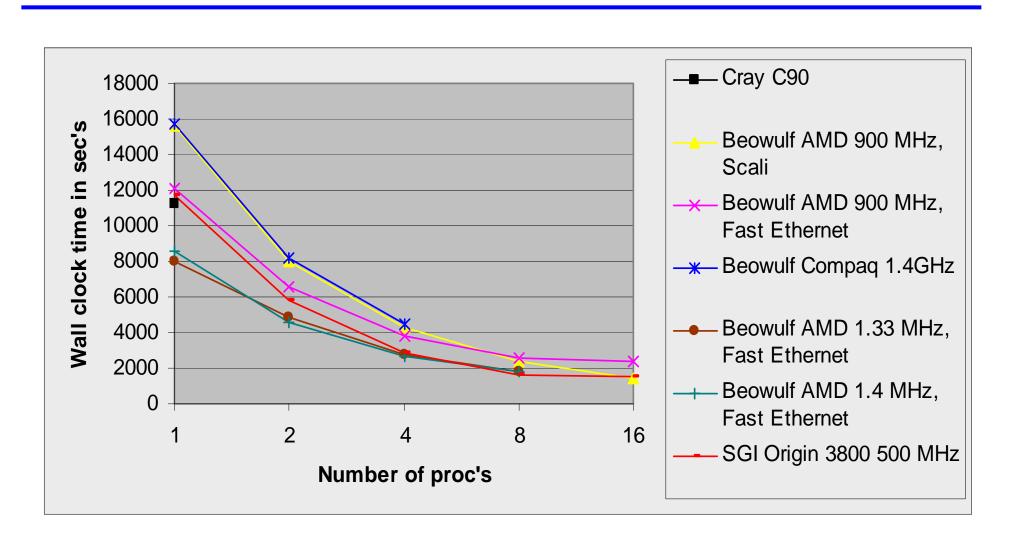
beams = 216

Response time = 50.35 ms

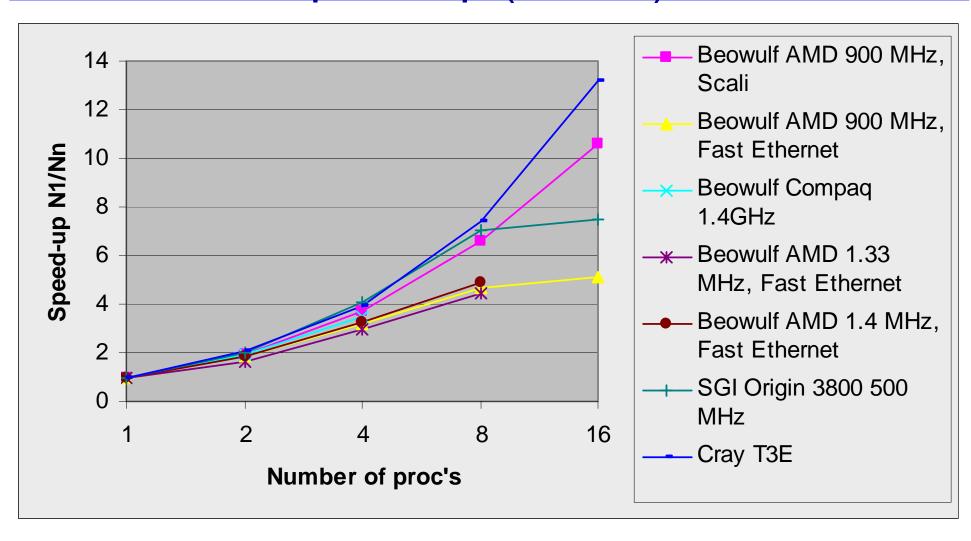


VDI/Audi benchmark

Solid Mechanics



VDI Audi frontal crash Speed-up (N1/Nn)



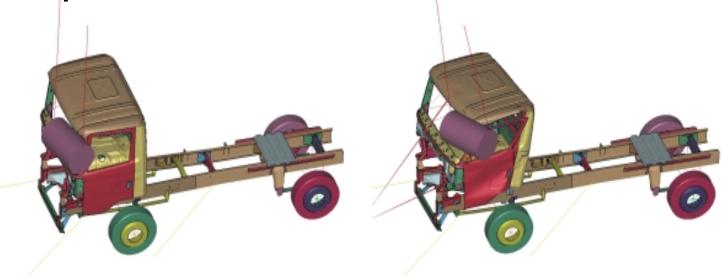
Swedish test on Scania truck

Solid Mechanics

shells = 159260

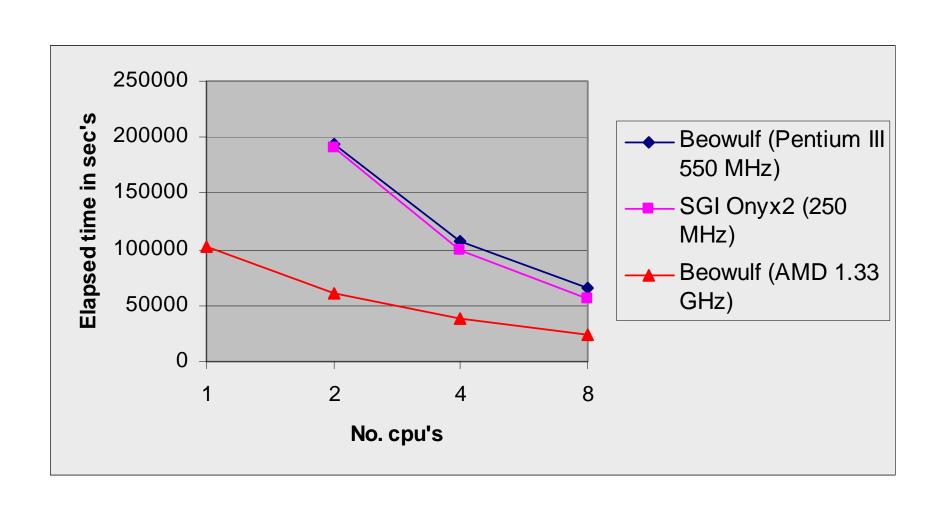
beams = 449

Response time = 140 ms



Swedish test on Scania truck

Solid Mechanics



Conclusions

- Finite Element simulations are used as a day-to-day tool in industry
- Simulation is evolving into Simulation Based Design, where optimization is a key feature
- Standard gradient based optimization techniques are in-feasible in non-linear mechanics applications
- Response Surface Methodology (RSM) is a global optimization technique that has shown very efficient
- For accuracy, RSM needs a large number of functional evaluations, and each of these requires high performance computing, in particular MPP
- Beowulf is the "poor mans" choice for high performance computing using MPP