
Introduction to Quick and Dirty Forensics

Leif Nixon

1/52

So, you think you may have an incident?

How do you know you might be dealing with a security incident?

Monitoring alarm
External alert
Anomalous system behaviour

2/52

Is this for real? – Incident triage

Look at things like:
system logs
command line histories
ps
top
netstat
lsof
. . .

Do not:

run rpm -Va

reboot the system

kill suspect processes

delete malicious files

. . .

3/52

Observation changes the observed object

Each time you run a command, each time you read a file, you change
timestamp information. Each time you write data to disk, you might
overwrite previously freed data sectors.

Do the least intrusive investigation possible.

4/52

Oh, sh?t!

It’s real! You’ve been hacked!

Quick, what’s the first thing you do?

Stop!

Take a break. Go have a cup of coffee. Or tea. Or a can of soda. (Beer
is probably not a good idea, though.)

5/52

Oh, sh?t!

It’s real! You’ve been hacked!

Quick, what’s the first thing you do?

Stop!

Take a break. Go have a cup of coffee. Or tea. Or a can of soda. (Beer
is probably not a good idea, though.)

5/52

Is this really your problem?

Decision point: where do we want to go with this?

Do we want evidence or leads?

6/52

The legal route

If you think you may get good enough data to go after the intruder
through the legal system, or if your policy requires that you do so, you
will need evidence that will stand up in court.

This probably means that the forensic investigation should not be
performed by you, but by a police technician or an outside expert.

It also means the rest of this presentation is not for you – thank you for
your attention and have a nice day.

7/52

The alternative route

On the other hand, your preliminary data may indicate that it is unlikely
that you will find binding evidence. Or you might have a policy that
forbids you to involve law enforcement.

Basically, you just want to get back into secure service as soon as
possible.

So, you just reinstall the system, right?

Nooo!

8/52

The alternative route

On the other hand, your preliminary data may indicate that it is unlikely
that you will find binding evidence. Or you might have a policy that
forbids you to involve law enforcement.

Basically, you just want to get back into secure service as soon as
possible.

So, you just reinstall the system, right? Nooo!

8/52

Our goal

To get back into secure service we would like to know:

How the intruders got in
When they did so
What they have been doing on the system
What we can do to stop them from returning
Which other sites that may have been hit

9/52

We must talk about this

One extremely important task during an incident:

Talk to people!

You need to communicate with victims, your users, management,
partner sites and other security teams, and keep them all appropriately
updated.

Good incident response is about good communications at least as
much as about technical skills. If you are working as part of a team,
you should assign one person to coordinate communications.

10/52

Quick and Dirty Forensics

A careful and thorough forensic investigation is hard to perform and
takes a long time.

But often, a quick and dirty investigation may be good enough, or
sometimes even better.

11/52

Make sure you are not interrupted

If possible, first check open network connections, e.g. by netstat.
Save the output, but preferrably not on the system itself; cut-and-paste
it from the terminal window to a local file.
Then isolate the system. Unplug the network cable, introduce a router
filter or drop a firewall in place, whatever is easiest. If this is a virtual
machine, snapshot it.

12/52

Now we can start in earnest

There are various types of data in the system, with widely varying
expected lifetime.

Table of Order of Volatility:

Registers, peripheral memory, caches, etc. nanoseconds
Main memory nanoseconds
Network state milliseconds
Running processes seconds
Disk minutes
Backup media, etc. years
Printouts, etc. tens of years

(Table borrowed from “Forensic Discovery”, Farmer & Venema, Addison-Wesley
2005). You should buy this book.)

13/52

The Order of Volatility

Basically, you should follow the order of volatility when collecting data.

With one exception: filesystem timestamp data. This is often the most
important data, and you want to capture it early in the investigation.

14/52

Something about filesystems

15/52

Types of timestamps

mtime – modification time; the last time the contents (data blocks) of a
file changed

atime – access time; the last time the file was read1

ctime – change time; the last time one of the attributes in the inode
changed

dtime – deletion time; recorded in deleted inodes (extnfs)

crtime – creation time; ext4fs only

1Death to the noatime mount option!
16/52

Trustworthiness of timestamps

The mtime and atime can easily be set to arbitrary values (using
touch, but not the ctime. This is sometimes very important.

(It is possible to change the ctime by changing the system time or
directly modifying the on-disk file system with fsdebug, but this is a bit
tricky, especially if the file system is mounted.)

17/52

Generating timelines from timestamps

By collecting and sorting timestamp data from the entire filesystem,
you can sometimes gain surprising insights into past activities.

There are two basic ways to collect the data, each with their own
(dis)advantages:

1 stat every file in the mounted filesystem
2 bypass the kernel filesystem code and dig out the data directly

from the device or an image using specialized tools

18/52

Generating timelines the quick and dirty way

Collecting data from the mounted filesystem is a simple one-liner.
Generating the timeline is almost as easy.

find / -xdev -print0 | xargs -0 stat -c "%Y %X %Z %A %U %G %n" >> timestamps.dat

timeline-decorator.py < timestamps.dat | sort -n > timeline.txt

19/52

Generating timelines the quick and dirty way

timeline-decorator.py:

#! /usr/bin/python

import sys, time

def print_line(flags, t, mode, user, group, name):
print t, time.ctime(float(t)), flags, mode, user, group, name

for line in sys.stdin:
line = line[:-1]
(m, a, c, mode, user, group, name) = line.split(" ", 6)
if m == a:

if m == c:
print_line("mac", m, mode, user, group, name)

else:
print_line("ma-", m, mode, user, group, name)
print_line("--c", c, mode, user, group, name)

else:
if m == c:

print_line("m-c", m, mode, user, group, name)
print_line("-a-", a, mode, user, group, name)

else:
print_line("m--", m, mode, user, group, name)
print_line("-a-", a, mode, user, group, name)
print_line("--c", c, mode, user, group, name)

20/52

Generating timelines the quick and dirty way

Doing it this way is very easy, which is good, especially if you are
coaching an inexperienced admin.

However, you will be messing up the atimes on every directory, and
you will miss information about deleted files.

If you are not careful about where you store the output data, it may
overwrite important deleted data blocks on the system.

Also, if the system is rootkitted, you will miss any hidden files.

21/52

Slightly slower and cleaner timelines

Alternatively, you can use The Sleuth Kit2, TSK, to generate timelines.

TSK is an open source toolkit that, among other things, can generate
timelines by reading the raw disk device (or a disk image).

TSK finds deleted inodes and directory entries.

2http://www.sleuthkit.org/
22/52

http://www.sleuthkit.org/

TSK timelines

fls -r -m / /dev/sda1 > rootfs.body

mactime -b rootfs.body > rootfs.timeline

23/52

TSK timelines

With TSK you bypass the kernel filesystem code and any rootkits,
revealing any hidden files. You also see deleted directory entries.

However, you have to somehow either make the TSK binaries available
on the system (compile them in place, transfer them to from another
system or mount some filesystem (NFS, USB stick. . .)), or make an
image of the disk and transfer it somewhere else.

24/52

Example

Tue Aug 16 2011 14:03:15 .a. r-xr-xr-x root root /usr/bin/w
Tue Aug 16 2011 14:03:28 .a. rwxr-xr-x root root /usr/bin/curl
Tue Aug 16 2011 14:03:36 .a. rwxr-xr-x root root /usr/bin/bzip2
Tue Aug 16 2011 14:04:41 .a. rwxr-xr-x root root /usr/bin/shred
Tue Aug 16 2011 14:06:26 .a. rw-r--r-- root root /usr/include/crypt.h
Tue Aug 16 2011 14:07:25 m.. rwxrwxr-x x_lenix x_lenix /var/tmp/...
Tue Aug 16 2011 14:08:01 m.c rw-r--r-- root root /var/tmp/.../openssh-5.2p1.tar.bz2 (deleted-realloc)
Tue Aug 16 2011 14:08:01 m.c rw-r--r-- root root /var/tmp/.../openssh-5.2p1 (deleted-realloc)

25/52

What does the timeline tell us?

ctimes often tells us when files were created
atimes can tell us when files were read and binaries executed
mtimes can be useful because they can be modified

26/52

mtime preservation

Many commands preserve mtimes (and atimes) when they copy files.

[nixon@host1]$ stat fie
File: ‘fie’
Size: 0 Blocks: 0 IO Block: 4096 regular empty file

Device: fd01h/64769d Inode: 314704 Links: 1
Access: (0664/-rw-rw-r--) Uid: (500/ nixon) Gid: (500/ nixon)
Access: 2012-04-19 13:39:29.311321819 +0200
Modify: 2012-04-19 13:39:29.311321819 +0200
Change: 2012-04-19 13:39:29.311321819 +0200
Birth: -

[nixon@host1 foo]$ scp -p fie host2:

[nixon@host2 foo]$ stat fie
File: ‘fie’
Size: 0 Blocks: 0 IO Block: 4096 regular empty file

Device: ca10h/51728d Inode: 2013283013 Links: 1
Access: (0664/-rw-rw-r--) Uid: (7090/ nixon) Gid: (7090/ nixon)
Access: 2012-04-19 13:39:29.000000000 +0200
Modify: 2012-04-19 13:39:29.000000000 +0200
Change: 2012-04-19 14:15:50.905321991 +0200

27/52

Traps and complicating factors

You only see the last timestamp – surprisingly easy to forget!
Prelinking
updatedb

tmpwatch

makewhatis

28/52

Signs of modifications

Has something interesting happened to this filesystem?

ls -i
12982 fileA
34919 fileB
12984 fileC
12985 fileD

29/52

Looking at deleted data

When a file is deleted, it is of course not actually removed from the
disk. In ext3:

The directory entry is marked as deleted, the directory list pointers
are updated to skip over the deleted entry, but the entry remains in
place on the disk.

The inode is marked as available. For technical reasons, the data
block pointers in the inode are cleared, but as long as the inode
isn’t reused, most of the other inode fields are intact.
The data blocks are marked as available, but their content remain
in place until overwritten.

30/52

Looking at deleted data

When a file is deleted, it is of course not actually removed from the
disk. In ext3:

The directory entry is marked as deleted, the directory list pointers
are updated to skip over the deleted entry, but the entry remains in
place on the disk.
The inode is marked as available. For technical reasons, the data
block pointers in the inode are cleared, but as long as the inode
isn’t reused, most of the other inode fields are intact.

The data blocks are marked as available, but their content remain
in place until overwritten.

30/52

Looking at deleted data

When a file is deleted, it is of course not actually removed from the
disk. In ext3:

The directory entry is marked as deleted, the directory list pointers
are updated to skip over the deleted entry, but the entry remains in
place on the disk.
The inode is marked as available. For technical reasons, the data
block pointers in the inode are cleared, but as long as the inode
isn’t reused, most of the other inode fields are intact.
The data blocks are marked as available, but their content remain
in place until overwritten.

30/52

Looking at deleted data

TSK can display deleted directory entries and inodes.

Retrieving the contents of deleted files is harder. If a file was deleted
sufficiently recently that the inode contents remain in the file system
journal, it can be recovered using extundelete.

Otherwise, your best bet is simply grepping through the whole image.

strings sda.img | grep "sshd.*Accepted "

31/52

Looking at deleted data

Since disk space is allocated in data blocks of (typically) 4096 bytes
there will be some unused space in the last data block if the file size is
not a multiple of 4096. This unused space is called slack space.

Slack space is mainly interesting for two reasons; it can sometimes
contain data from old deleted files, and it can be used by an intruder to
hide data on the disk.

Similarily to deleted data, slack space data can be found by grepping
through the disk image.

32/52

Working with disk images

Grabbing a disk image is easy enough. To get the whole disk:

dd if=/dev/sda of=sda.img bs=512

Just a specific partition:

dd if=/dev/sda1 of=sda1.img bs=512

Caution: if disk is mounted at the time, the resulting image will be
inconsistent and probably not mountable. Still, TSK will be able to work
with it.

33/52

Working with disk images

Listing and extracting partitions with TSK:

$ mmls -a sda.img
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

Slot Start End Length Description
02: 00:00 0000002048 0000022527 0000020480 Linux (0x83)
06: 01:00 0000024576 0000126975 0000102400 Linux (0x83)
10: 02:00 0000129024 0000169983 0000040960 Linux Swap / Solaris x86 (0x82)
14: 03:00 0000172032 0000262143 0000090112 Linux (0x83)

$ mmcat sda.img 6 > sda2.img

$ ls -lh
total 51M
-rw-rw-r-- 1 nixon nixon 50M Apr 22 12:36 sda2.img
-rw-rw-r-- 1 nixon nixon 129M Apr 22 12:32 sda.img

34/52

Working with disk images

Images can be loopback-mounted for easy access:

mount -o loop,ro sda2-copy.img mnt

Sometimes this will fail; this can be because the image is corrupted, or
simply because you have to replay the journal by briefly mounting the
image read-write3:

mount -o loop sda2-copy.img mnt
umount mnt
mount -o loop,ro sda2-copy.img mnt

3or by using the norecovery mount option, but then the filesystem may be
inconsistent

35/52

Working with disk images

To avoid time- and space-consuming copy operations, you can work
with partitions in-place:

fls -o 245764 -r -m / sda.img > rootfs.body

mount -o ro,loop,offset=125829125 sda-copy.img mnt

4Offset in sectors, as reported by mmls
5Offset in bytes, i.e. 24576 × 512

36/52

Looking at other data

Of course, we must also look at other data sources on the running
system. However, if the system is root compromised, it might be lying
to us.

We might gain some confidence in the system by verifying system
binaries by running e.g. rpm -Va6.

If we find that e.g. the ps binary has been replaced, perhaps we can
copy a fresh binary from another system, or simply use pstree or
top instead.

6Don’t do this before you have gathered timestamps, since it will zap all atimes!
37/52

Looking at processes

Once we think that we might be getting reliable data, look at the
running processes. Remember that malicious processes can change
their name to masquerade as, say, an extra init process.

Look for anomalies like duplicate system processes or strange
inheritances (ping should not have a bash child process, for
example).

Also look at pid numbers; system processes usually have pids in a
narrow range. Something that looks like a system process but has a
much higher pid might be suspicious.

38/52

Looking at open files and sockets

Use netstat and lsof to check open files and sockets. This can
help identifying evil processes.

39/52

Looking at memory

If you find a malicious process, its memory may contain important
information. You can use e.g. gcore7 to generate a core dump for the
process. Running strings on this can often reveal stuff like IP
addresses and passwords.

It may also be interesting to dump the entire RAM of the system.
Unfortunately, doing this can be less than trivial in modern kernels –
see e.g. https://code.google.com/p/lime-forensics/ for
one method, and to actually analyze the dump, check out Volatility
(https://code.google.com/p/volatility/wiki/
LinuxMemoryForensics).

7part of the gdb package
40/52

https://code.google.com/p/lime-forensics/
https://code.google.com/p/volatility/wiki/LinuxMemoryForensics
https://code.google.com/p/volatility/wiki/LinuxMemoryForensics

Quick and dirty malware analysis

If you find a malicious binary, running strings -a8 on it can yield
interesting results.

You can also try to execute the binary under strace and ltrace to
see in greater detail what it is doing. This must be done very carefully,
preferably on an isolated host (like e.g. a VM without network access).

8Little known fact: strings will try to be smart when it’s being run on an ELF
binary and just look through certain ELF sectors. Use -a to read the whole file.

41/52

Quick and dirty malware analysis

ltrace and strace of a suspect sshd binary when logging in as
myuser:mypassword:

:
:
3348 strcmp("mypassword", ".ssh/authorized_keys2 ") = 1
3348 memset(0x7fff24742210, ’\000’, 2048) = 0x7fff24742210
3348 memset(0x7fff24742c10, ’\000’, 512) = 0x7fff24742c10
3348 memset(0x7fff24742a10, ’\000’, 512) = 0x7fff24742a10
3348 strcat("SR: ’", "myuser") = "SR: ’myuser"
3348 strcat("SR: ’myuser’ ’", "mypassword") = "SR: ’myuser’ ’mypassword"
:
:

:
:
3318 <... read resumed> "\n\0\0\0\6mypassword", 11) = 11
3321 read(4, <unfinished ...>
3318 open("/usr/share/kbd/keymaps/i386/azerty/c1", O_RDWR|O_CREAT|O_APPEND, 0666) = 3
3318 getuid() = 0
:
:

42/52

Obfuscated data

Often, trojans will obfuscate strings (e.g. filenames) in the binary and
data in log files. This is almost, almost always done by xor:ing the data
with a single byte.

So, if a file contains binary junk, try xor:ing it with different values until
you find something interesting.

43/52

Obfuscated data

$ file azerty/c1
azerty/c1: data

$ xor.py azerty/c1

$ ls
0x01.out 0x21.out 0x41.out 0x61.out 0x81.out 0xa1.out 0xc1.out 0xe1.out
0x02.out 0x22.out 0x42.out 0x62.out 0x82.out 0xa2.out 0xc2.out 0xe2.out
:
:

$ grep SR: *.out

0xff.out: SR: ’myuser’ ’mypassword’

44/52

Obfuscated data
#! /usr/bin/python

import sys, argparse

def xor(buf, n):
f = open("0x%02x.out" % n, "w")
for c in buf:

f.write(chr(ord(c) ^ n))
f.close()

parser = argparse.ArgumentParser(description="xor a file with one or several integer values, output to one or several files in cwd.")

parser.add_argument("-n", help="Integer to xor with (default: loop over 1-255)")
parser.add_argument(’infile’, nargs=’?’, type=argparse.FileType(’r’),

default=sys.stdin, help="Input file (default: stdin)")

args = parser.parse_args()

if args.n:
if args.n.startswith("0x"):

n = int(args.n, 16)
else:

n = int(args.n)
else:

n = None

data = args.infile.read()

if n:
xor(data, n)

else:
for i in range(1,256):

xor(data, i)

45/52

Looking at logs

In a root intrusion, local system logs may be wiped or sanitized. Of
course, this shouldn’t be a problem, since you are also logging
remotely to a secure central log server, right?

However, in the unlikely event that you don’t have remote logging,
remember that e.g. ssh logins will leave traces in many different
places, including (on a standard RHEL5-type system):

/var/log/secure – ssh logs
/var/log/wtmp – binary db of terminal sessions
/var/log/btmp – binary db of failed logins
/var/log/lastlog – binary (sparse file) db of latest logins per
user
/var/log/audit/audit.log – events from the audit
subsystem

Even if the intruder has tried to remove his traces, he might have
missed one of these places – check them all!

46/52

A brief note on rootkits

The main problem with the quick and dirty approach to forensics is that
we are placing a lot of trust in the tools on the system. If the intruder
has deployed a rootkit, we may be in trouble.

47/52

User level rootkits

User level rootkits basically work by replacing key system binaries.
These can often be discovered by running e.g. rpm -Va (this of
course presumes that rpm itself is trustworthy – you may want to use
several different methods to verify binaries).

48/52

Kernel-based rootkits

Kernel-based rootkits instead subverts the running kernel into lying
about the state of the system. Kernel rootkits can typically hide the
existence of certain files and processes. These rootkits can be hard to
detect, but tools like chkrootkit and rkhunter can find some
common kinds of rootkits.

It is also noteworthy that TSK usually can detect files hidden by kernel
rootkits, since it bypasses most of the kernel filesystem stack.

49/52

Putting it all together

Once you have all your data, remember to compare and cross-check
your data sources; Do command line histories match atimes on
binaries? Do filesystem timestamps match login/out times? Etc, etc.

This not only increases the confidence level of your data, it can also
help you gain new insights.

For example, if filesystem timestamps indicate attacker activities taking
place at times when there were no active logins, perhaps there is a
backdoor on the system that you have missed.

50/52

Going back into service

After your forensic investigation, you hopefully have a pretty good idea
of the intruder’s actions. This allows you to clean your system from
malware and to plug any hole the intruder might have exploited.

However, a root compromised system will almost always need to be
installed. Still, your investigation will help you stop the same thing from
happening in the future.

51/52

A quick and dirty conclusion

We have looked at some simple methods to collect forensic data.
These methods are somewhat fragile and can be fooled by a clever
attacker.

However, most attackers aren’t very clever, and the quick and dirty
approach surprisingly often can give a surprisingly detailed picture of
the intruder’s actions.

All sysadmins should know some basic quick and dirty forensics
methods.

Hopefully, you do so now. Let’s try it!

52/52

