DAITF and the DataNet Federation Consortium

Reagan W. Moore
University of North Carolina at Chapel Hill
rwmoore@renci.org

Topics

DAITF and WebDataForum

Working groups

DataNet Federation Consortium

- Interoperability between systems
- Federation of data management systems

Research Data Alliance

- International effort to understand data sharing and interoperability
 - 16 working groups have been proposed
- Policy-based interoperability working group
 - Collections are governed by policies
 - Share policies and associated procedures to understand what can be done with the shared data
 - Makes explicit the relationship between domain knowledge and the procedures that encapsulate the knowledge into workflows
 - Expect to share the basic functions (micro-services) that are chained to create workflows

Workflows as Domain Knowledge

An example is the hydrology community

- Access multiple federal repositories to acquire digital elevation maps, precipitation, soil, land cover data
- Process each data set to transform to the required physical variables and coordinate system
- Each process step is encapsulated into a separate basic function (micro-service)
- Chain the micro-services together to implement an analysis

VIC watershed analysis

- 3085 files
- Requires about 3 hours to run as a workflow, versus about 3 months to do the data aggregation and transformation by hand

Use Cases

- Demonstrate reproducible science. A use case could include the registration, storage, sharing, and re-execution of a workflow. The hypoxia use case from the Cross-Domain and Brokering Concept groups could be used as an example.
- Automate data retrieval. A use case could demonstrate remote access to a data collection, retrieval of desired data sets, transformation, and use in an analysis workflow. An eco-hydrology example that automates access to digital elevation maps and land use coverage is being built.
- Integrate community resources with collaboration environments. An example would be use of the DAB protocol to identify and cache local copies of relevant data sets for local analysis.
- Integrate multiple community resources. A use case could be demonstration of invocation of multiple workflow systems within the same analysis. An example is the integration of Cyberintegrator workflow with collaboration environments to support drought prediction.

iRODS Rule for RHESSys

Modular workflow composed by chaining basic transformation
Define input variables
Call functions to apply each transformation step
Store results in shared collection

```
main {
getExtentForGageReachcode(*gageReachcode, *extentInNHD Vect Coords);
convertExtentToNHD DEM(*extentInNHD Vect Coords,
*extentInNHD DEM Coords);
extractTileFromNHD DEM(trimr(*extentInNHD DEM Coords, "\n"));
importDEMTileIntoNewGRASSLocationAsUTM(*extentInNHD Vect Coords,
*newLocPhysPath, *newLocObjPath);
delineateWatershedForNHDGage(*nhdStreamGageID, *newLocPhysPath,
*newLocObjPath);
```


Science Requirements Working Group

- Focus on the knowledge needed to understand a scientific data set
- Common properties
 - Data format (e.g. HDF5, NetCDF, FITS, ...)
 - Coordinate system (spatial and temporal locations)
 - Geometry (rectilinear, spherical, flux-based, ...)
 - Physical variables (density, temperature, pressure)
 - Physical units (cgs, mks, ...)
 - Accuracy (number of significant digits)
 - Provenance (data generation steps, calibration steps)
- Domain specific and project specific properties
 - Physical approximations (incompressible flow, adiabatic, equation of state, ...)
 - Semantics (domain knowledge for term relationships)
 - Domain Semantics (domain knowledge& term relationships)
 - Extended Semantics (project-specific properties)

DataNet Federation Consortium

Data Driven Science

- Implement national data grid
 - Federate existing discipline-specific data management systems to enable national research collaborations
- Enable collaborative research on shared data collections
 - Manage collection life cycle as the user community broadens
- Integrate "live" research data into education initiatives
 - Enable student research participation through control policies

<u>Project</u>

Shared Collection

Processing Pipeline

Digital Library

Reference Collection

Federation

Collection Life Cycle

Cyber-infrastructure Partners:

Univ. of North Carolina, Chapel Hill Univ. of California, San Diego Arizona State University Drexel University Duke University University of Arizona University of South Carolina

Science and Engineering Initiatives:

Ocean Observatories Initiative the iPlant Collaborative

CUAHSI

CIBER-U

Odum Social Science Institute
Temporal Dynamics of Learning Center

Policy-based data management

National Science Foundation Cooperative Agreement: OCI-0940841

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

DataNet Federation Consortium

- Uses extensibility mechanisms provided in iRODS
 - Storage resource drivers
 Issue protocol of remote repository (Posix I/O)
 - Micro-Service Structured Object
 Issue protocol of remote repository for get and put
 Used to create soft links
 - Federation policies
 Control interactions between data management systems

DFC Federation

(Federation of DFC Platforms)

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

Three Areas of Tech Dev

Authentication

- iRODS supported Secure Password, Kerberos and GSI
- iRODS extended to support PAM/LDAP
- Pluggable Authentication Module
- PAM is part of the X/Open Single Sign-on (XSSO) standard

Workflow Virtualization

- SRB virtualized users, resources, data and collections
- iRODS virtualized policies and micro-services
- iRODS extended to virtualize workflows

Data Book GUI

- A Face Book for Data
- Under design and development

DataNet Federation Consortium

Engineering Demo

Isaac Simmons, William Regli **Drexel University**

Format Registry

- Centralized store for file format knowledge
- Configured by OWL schema
- Stored in iRODS
 - AVU metadata
 - Sample files
- Engineering file formats (63)

File Conversion

- NCSA Polyglot server
 - Code reuse server for file conversions
- iRODS micro-service
 - Upload from iRODS to Polyglot HTTP server
 - Download converted files from Polyglot to iRODS
- Convert proprietary 3D CAD formats into open formats appropriate for archival and consumption

File Conversion

MediaWiki Integration

- CIBER-U is a MediaWiki installation used for engineering design education
 - 41 courses, 9 universities, 32 faculty
- MediaWiki offers limited file curation capabilities – Augment with iRODS file storage
- Bring iRODS capabilities to the processes users are already using

DFC + DataONE Interoperability

- Goal: support interoperability between a DFC data grid and DataONE
- Task: Retrieve a file from DataONE, load into a DFC collaboration environment and add metadata

Interoperability Approach

How It Works

- Query DataONE Coordinating Nodes with SOLR query
- 2. Create iRODS collection with same name as query
- 3. Get list of identifiers for metadata files from search
- 4. Download the metadata file for each identifier
- 5. Store the metadata file in DFC data grid

What the Demo Shows

Mercury Web portal

REST

APIs

EarthCube Demonstrations

Event-Driven Real-Time Drought Analysis/ Prediction Workflow

http://rapid.ncsa.illinois.edu:8080/rapid/

Hypoxia in the Gulf of Mexico

- Dissolved oxygen plots stored in iRODS repository
- Plots can be annotated on web portal
 - annotations stored as iRODS metadata

DataNet Federation Consortium

http://www.datafed.org

