AUUG Winter 2002
SSH tips, tricks & protocol tutorial

Damien Miller (djm@mindrot.org)
August 2002

Contents
1 About this document 2
1.1 Copyright« o e 2
1.2 Disclaimer L 2
1.3 Audience 2
1.4 A noteontheexamples 2
1.5 Revision e e 2
2 Introduction 3
2.1 What is SSH 3
2.2 History e 3
3 Basic SSH usage 4
3.1 Remotelogin e 4
3.2 Initial server key discovery oo 4
3.3 Executing commands remotely oL L oL o 5
3.4 Filetransfer 5
4 Public key authentication 9
4.1 Generating publickeys Lo 9
4.2 Public key authentication L 9
4.3 Usingssh-agent oL L 10
4.4 Public key restrictions L 11
5 SSH Forwarding 13
5.1 Authentication agent forwarding L oo 13
5.2 X1l forwarding 13
5.3 Port forwarding 13
5.4 Dynamic port forwarding 14
6 SSH Implementations 15
6.1 OpenSSH e 15
6.2 SSH Communications Corporation 15
6.3 Unix e 15
6.4 Windows 15
6.5 Macintosh L 16
6.6 Other e e 16

1 About this document

1.1 Copyright
This document is Copyright 2002 Damien Miller. Permission to use, modify and redistribute

this document is granted provided this copyright message, list of conditions and the following
disclaimer are retained.

1.2 Disclaimer
This document is offered in good faith. No responsibility is accepted by the author for any loss or

damage caused in any way to any person or equipment, as a direct or indirect consequence of use
or misuse of the information contained herein.

1.3 Audience
This document is intended for users and administrators of Unix-like operating systems. It assumes

a moderate level of familiarity with the Unix command-line and a basic working knowledge of
TCP/IP networking.

1.4 A note on the examples
All the examples contained herein were written for OpenSSH 3.4. They should work relatively

unchanged on more or less recent versions of OpenSSH. They are unlikely to work on other SSH
implementations without adjustment.

1.5 Revision

This is the initial revision.

2 Introduction

2.1 What is SSH

SSH (Secure SHell) is a network protocol which provides a replacement for insecure remote login
and command execution facilities, such as telnet, rlogin and rsh. SSH encrypts traffic in both
directions, preventing traffic sniffing and password theft. SSH also offers several additional useful
features:

e Compression: traffic may be optionally compressed at the stream level.

Public key authentication: optionally replacing password authentication.

Authentication of the server: making ”man-in-the-middle” attack more difficult

Port forwarding: arbitrary TCP sessions can be forwarded over an SSH connection.

e X11 forwarding: SSH can forward your X11 sessions too.

File transfer: the SSH protocol family includes two file transfer protocols.

2.2 History

SSH was created by Tatu Ylonen in 1995 and was at first released under an open-source license.
Later versions were to bear increasing restrictive licenses, though they generally remained free for
non-commercial use. He went on to form SSH Communications security which sells commercial
SSH implementations to this day. The earlier versions of his code implement what is now referred
to as SSH protocol v.1.

In 1997 a process began to make the SSH protocols Internet standards under the auspices of the
IETF. This lead to the development of version 2 of the SSH protocol. In the rewrite, the protocol
was split into a transport layer, and connection and authentication protocols. Several security
issues were also addressed as part of this process.

In 1999, the OpenBSD! team discovered (by way of OSSH?) the early free versions for Tatu
Ylonen’s original code and set about cleaning them up to modern standards. The result was
named ”OpenSSH” and debuted in the OpenBSD 2.6 release of December 1999. OpenSSH was
extended by Markus Friedl to support SSH protocol v.2 in early 2000. OpenSSH remains the
most popular, complete and portable free SSH implementation and has been included in many OS
releases. The full history of OpenSSH is documented here?.

Thttp://www.openbsd.org/
2ftp://ftp.pdc.kth.se/pub/krypto/ossh/
Shttp://www.openbsd.org/history.html

http://www.openbsd.org/
ftp://ftp.pdc.kth.se/pub/krypto/ossh/
http://www.openbsd.org/history.html

3 Basic SSH usage

3.1 Remote login

The basic syntax to log into a remote host is:
ssh hostname

If you want to specify a username, you may do it using an rlogin-compatible format:
ssh -1 user hostname

or a slightly more simple syntax:
ssh user@hostname

If you are running your sshd on a non-standard port, you may also specify that on the command-
line:

ssh -p 2222 user@hostname

3.2 Initial server key discovery

The first time your client connects to a ssh server, it asks you to verify the server’s key.

[djm@roku djm]$ ssh root@hachi.mindrot.org

The authenticity of host ’hachi.mindrot.org (203.36.198.102)° can’t be established.
RSA key fingerprint is cd:41:70:30:48:07:16:81:e5:30:34:66:£1:56:ef:db.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ’localhost’ (RSA) to the list of known hosts.
root@hachi.mindrot.org’s password:

Last login: Tue Aug 27 10:56:25 2002

[root@hachi root]#

This is done to prevent an attacker impersonating a server, which would give them the opportunity
to capture your password or the contents of your session. Once you have verified the server’s key,
it is recorded by the client in ~/.ssh/known_hosts so it can be automatically checked upon each
connection. If the server’s key changes, the client raises a warning:

[djm@roku djm]$ ssh hachi
defelelclelclelelelcleleleedddeeeeceddddeddeleeddddeeeeceeddcdcdeledddddeeeeee

e WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! e
defeleleleleleleleleleleleeEdeeeeeeeeedededeleleEdeeeeeeeeeedeedeEEddedeeeeee

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!

It is also possible that the RSA host key has just been changed.

The fingerprint for the RSA key sent by the remote host is
€cd:41:70:30:48:07:16:81:e5:30:34:66:f1:56:ef:db.

Please contact your system administrator.

Add correct host key in /home/djm/.ssh/known_hosts to get rid of this message.
Offending key in /home/djm/.ssh/known_hosts:24

RSA host key for localhost has changed and you have requested strict checking.
Host key verification failed.

3.3 Executing commands remotely

SSH also supports remote command execution. When you log in, a pseudo-terminal is assigned
to your session and your session will remain open until you explicitly log out or is killed from the
server end. In remote command execution mode, SSH will execute your specified command with
the remote user’s shell and then exit as soon as it finished:

[djm@roku djm]$ ssh root@hachi.mindrot.org "ls -C /bin"
root@hachi.mindrot.org’s password:

[cpio echo ksh mv rm sleep
cat csh ed In pax rmail stty
chgrp date eject 1s ps rmd160 sync
chio dd expr md5 pwd rmdir tar
chmod df hostname mkdir rcp sh test
cp domainname kill mt rksh shal

Note that this won’t work for programs which need a terminal to operate (e.g. text editors such
as vi). To use programs like this, you need to force SSH to allocate a pseudo-terminal using the
-t flag:

ssh -t user@hostname vi /tmp/foo

3.3.1 Redirecting commands’ input and output

You may also redirect standard file descriptors (stdin, stdout & stderr) as usual when using SSH.
This makes for some very useful tricks:

[djm@roku djm]$ ssh root@hachi.mindrot.org "ls /bin | grep -i rm"
root@hachi.mindrot.org’s password:

m

rmail

rmd160

rmdir

In this example, the grep command is executed on the remote machine. One could achieve the
same output running the grep command on the local machine instead:

ssh root@hachi.mindrot.org "ls /bin" | grep -i rm

Redirection of stdio is very useful for shuffling data between machines. This example loads a
hypothetical SQL file onto a remote machine and massages the output:

ssh hachi "psql billing" < billing.sql | grep -v "INFO

Warning: a common error when redirecting output from an SSH process is to have commands
which produce output in initialisation scripts which are executed every time the shell is run (e.g.
.teshre, .kshre, .bashre, etc) rather than in login scripts (e.g. .profile, .login, .bash_ profile). If
output-producing commands are in shell init scripts, their output will be included along with the
output of your commands. They also break file transfer using SSH.

3.4 File transfer

SSH offers a number of ways to transfer files between machines. Most of these take advantage of
the aforementioned input/output redirection features of SSH.

3.4.1 scp

scp is the original SSH file transfer mechanism. It is modeled on BSD rcp, a protocol with a 15+
year history which has no RFC. Its syntax is very simple:

scp [user@]lhost:/path/to/source/file /path/to/destination/file

Will copy a remote file to a local destination. To copy a local file to a remote destination, one
uses the opposite syntax:

scp /path/to/source/file [user@]host:/path/to/destination/file

In either of these cases, the source file may be a wild-card matching multiple files. If a patch is
left off the destination file specification, the remote user’s home directory is assumed. E.g.:

scp /home/djm/*.diff hachi:

scp does not support copying between two remote destinations very well. It is possible using the
following syntax:

scp [user@lhostl:/path [user@lhost2:/path

For this to work, host1l must be configured for password less access to host2 (see section 4). Also
little feedback is given to the user on whether the operation succeeded.

scp can also copy files recursively:
scp -r source-path [user@lhost:/destination-path
scp -r [user@]lhost:/source-path /destination-path

While it is useful for simple file transfer tasks, it has a number of limitations. The most annoying
of these is poor handling of file which contain characters which may be interpreted by the shell
(e.g. spaces). For example:

[djm@roku djm]$ scp "hachi:/mp3/J.S Bach/Matthaus Passion 0101.ogg" /tmp
cp: cannot stat ‘/mp3/J.S.’: No such file or directory

cp: cannot stat ‘Bach/Matthaus’: No such file or directory

cp: cannot stat ‘Passion’: No such file or directory

cp: cannot stat ‘0101.ogg’: No such file or directory

In these cases you need to double-escape the characters in question:
scp "hachi:/mp3/J.S.\ Bach/Matthaus\ Passion\ 0101.ogg" /tmp

Another problem inherent to scp is that it needs to be able to find a scp binary at the remote end.
Usually such commands are correctly installed in the remote systems $PATH, but if they are not
then transfers will fail:

[djm@roku djm]$ scp hachi:/tmp/foo /tmp
bash: scp: command not found

3.4.2 draft-secsh-filexfer (a.k.a sftp)

Many of the shortcomings of the scp protocol have been addressed in the IETF working group.
The result of this is the protocol described in the draft-secsh-filexfer-* set of Internet-drafts. This
protocol, better known as sftp, is a generic file transfer protocol which is designed to be run over
any secure transport.

sftp looks very much like the Unix block API, with equivalents to open(), read(), write(), lseek()
as well as readdir() and friends. This similarity has led some to consider it more closely related
to NFS than ”file transfer” protocols such as FTP.

OpenSSH includes an interactive sftp client:

[djm@roku ssh-tutoriall$ sftp hachi
Connecting to hachi...
sftp> cd /usr/share/games

sftp> 1s

drwxr-xr-x 8 root wheel 512 Aug 21 19:01

drwxr-xr-x 22 root wheel 512 Apr 30 2001 ..
drwxr-xr-x 2 root wheel 512 Aug 21 19:01 atc
drwxr-xr-x 2 root wheel 512 Aug 21 19:01 boggle
drwxr-xr-x 2 root wheel 512 Apr 30 2001 ching
drwxr-xr-x 2 root wheel 512 Aug 21 19:01 fortune
drwxr-xr-x 2 root wheel 512 Aug 21 19:01 larn
drwxr-xr-x 2 root wheel 1024 Aug 21 19:01 quiz.db
-r--r—-r-- 1 root games 2030 Aug 21 19:01 cards.pck
-r--r—-r-- 1 root games 10087 Aug 21 19:01 cribbage.instr
-r--r-—-r-- 1 root games 1565 Aug 21 19:01 fish.instr
-r--r--r-- 1 root games 1941 Aug 21 19:01 wump.info

sftp> lcd /tmp

sftp> get cx*

Fetching /usr/share/games/cards.pck to cards.pck

Fetching /usr/share/games/ching to ching

Cannot download a directory: /usr/share/games/ching
Fetching /usr/share/games/cribbage.instr to cribbage.instr
sftp> quit

3.4.3 tar-over-ssh

As mentioned in section 3.3.1, ssh can be used as transport to redirect input and output between
hosts. This ability makes it easy to transfer files using standard unix archiving utilities like tar
and cpio. These have advantages when you need to transfer a large numbers of file, preserve file
attributes exactly and copy hard or symbolic links.

The following example will copy all files and directories from /usr/share/games on host hachi
to /tmp on the local machine. Note that this will preserve the directory structure and attributes
including utimes, owner, group and permission information.

[root@roku root]# ssh hachi "cd /usr/share/games ; tar cf - ./ax" | \
> (cd /tmp ; tar xpvf -)

./atc

./atc/Atlantis

./atc/Game_List

./atc/Killer

./atc/OHare

./atc/Tic-Tac-Toe

To copy local files to a remote destination, a symmetrical command may be used:

(cd /tmp ; tar cf - ./xyz*) | ssh hachi "cd /tmp ; tar xcvf -

A slight modification to the above example makes it easy to obtain a local tar file of a remote set
of files (note the extra compression step):

ssh hachi "cd /tmp ; tar cvf - ./* | bzip2 -9" > tmp.tar.bz2

This technique is very useful for simple unattended backups, once password-less authentication
has been configured (section 4).

3.4.4 rsync

Rsync? is a package and algorithm to two sets of files into synchronisation. Rsync just sends the
differences between the two sets of files over the network instead of sending their entire contents.
Rsync is often used as a very powerful mirroring process or as a replacement for the scp/rcp
command. Rsync includes support for ssh with a single command-line option.

Rsync can be used to simple list files on the remote machine, in a particular directory:
rsync -e ssh djm@hachi:/tmp/

To synchronise/copy a remote set of files to a local set:
rsync -ve ssh djm@hachi:/bin/c* /tmp

To synchronise/copy a local set of files with a local set:
rsync -ve ssh djm@hachi:/bin/c* /tmp

Rsync has many more options and features, these are best described in its excellent man page.

4http://rsync.samba.org/rsync/

http://rsync.samba.org/rsync/

4 Public key authentication

SSH includes an ability to authenticate users using public keys. Instead of authenticating the user
with a password, the server will verify a challenge signed by the user’s private key against its copy
of the user’s public key.

Setting up public key authentication requires you to generate a public/private key pair and install
the public portion on the server. It is also possible to restrict what a given key is able to do and
what addresses they are allowed to log in from.

4.1 Generating public keys

To generate a public key, use the ssh-keygen utility. ssh-keygen can generate three types of
keys: rsa, dsa and rsal. rsal keys are used for authentication by the legacy SSH protocol v.1, the
other two types may be used for SSH protocol v.2 public key authentication. Select the type of
key that you wish to generate by passing the -t option to ssh-keygen. Normally you will want
to use rsa keys as they are somewhat faster to authenticate than dsa keys.

[djm@roku ssh-tutoriall$ ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/home/djm/.ssh/id_rsa):

Created directory ’/home/djm/.ssh’.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/djm/.ssh/id_rsa.

Your public key has been saved in /home/djm/.ssh/id_rsa.pub.

The key fingerprint is:
3c:7e:41:2¢c:d2:51:£8:0b:ef:78:e7:e3:22:eb:af:6a djm@roku.mindrot.org

You may also generate keys without passphrases, which are useful when used with key restrictions
(section 4.4):

ssh-keygen -t dsa -N ’’ -f ~/.ssh/id_dsa_example

4.2 Public key authentication

Once you have generated a key pair, you must now install the public key on the server that you
wish to log into. The public portion is stored in the file with the extension .pub in an ASCII
encoding:

[djm@roku ssh-tutoriall$ cat ~/.ssh/id_rsa.pub

ssh-rsa AAAAB3NzaClyc2EAAAABIwWAAAQEAocosorAF8t6k6cmNXiPdP4eE63YFLr/3SjA
GLzCKAJ4cWyAPIrIdeaudle+y5rj+1E6qQEYM3N16S ju2dl21+ia+toqA2SQCtUrZTBYVyX
2D4f1x310K4pTI1lWrYzGuj+k3h3tmbr5AdUOk5kxki/xiLRx91gIuWC60qCsYJYVV10HOh
2LRNaSh2YRPptf7aJk+4QcwUuubQB9g4WBznWWpwj7YeT7n57£38kTbSvatr5hrPWTRFYB
qT4LJgvalkrxQNX143uWOmfTMKV2pUBcMWroVR7X02d4Gh6VS2rpKxnqg+CNjjj12TunVHR
gbbdkuab5M1/HbpHubmta/dGkoFrQ== Laptop key

NB. The above is really a single, unbroken line of text.

To enable public key authentication on a server, you need to append the public portion of the key
to the /.ssh/authorized_keys file. This may be accomplished with the following command-line:

ssh hachi "umask 077; cat >> .ssh/authorized_keys" < ~/.ssh/id_rsa.pub

The restrictive umask is required because the server will refuse to read ~/.ssh/authorized_keys
files which have loose permissions. Once the public key is installed on the server, you should now
be able to authenticate using your private key:

[djm@roku ssh-tutorial]$ ssh djm@localhost

Enter passphrase for key ’/home/djm/.ssh/id_rsa’:
Last login: Thu Aug 29 11:08:29 2002

[djm@roku ssh-tutoriall$

Notice we are asked for the private key’s passphrase instead of the user’s password on the server.

4.3 Using ssh-agent

So far the use of public key authentication may not seem to have much benefit - we have only
traded the need to type your server’s password with the need to enter a (potentially longer) private
key passphrase.

The solution to this inconvenience is ssh-agent, a small program which you run once per login
(or X11) session and load your key(s) into. Once ssh-agent has your key(s) loaded, it will
automatically provide them to the ssh client.

To start up ssh-agent, you need something like the following line in your .profile (or equivalent):
test -z "$SSH_AUTH_SOCK" && eval ‘ssh-agent -s°

When executed, ssh-agent will emit a couple of environment variables to standard output. The
eval directive ensures they are imported into your environment. The test directive at the start of
the line ensures that you don’t end up running excess copies of ssh-agent.

Once ssh-agent is running, you need to load your private keys into it. This may be done using
the ssh-add program. Running ssh-add with no arguments will attempt to load the three default
key files (protocol vl RSA, protocol v.2 RSA & DSA) into your agent:

[djm@roku ssh-tutoriall]$ ssh-add
Enter passphrase for /home/djm/.ssh/id_rsa:
Identity added: /home/djm/.ssh/id_rsa (/home/djm/.ssh/id_rsa)

Once keys are in the agent, you can log in without the need to re-enter your passphrase:

[djm@roku ssh-tutoriall$ ssh djm@hachi
Last login: Thu Aug 29 12:40:18 2002 from localhost.localdomain

You also use ssh-add can check which keys are loaded into the agent:

[djm@roku ssh-tutoriall]$ ssh-add -1
2048 40:26:0a:59:€9:15:¢0:d6:85:87:ec:63:5d:cc:06:ab /home/djm/.ssh/id_rsa (RSA)
2048 39:9f:9c:47:29:be:94:f6:1e:e6:a5:97:2d:b0:74:c3 /home/djm/.ssh-old/id_rsa (RSA)

ssh-add also provides the ability to delete keys from the agent:

[djm@roku ssh-tutoriall$ ssh-add -D
A1l identities removed.

10

4.4 Public key restrictions

Public keys may have restrictions placed on them at the server end. The most common restriction
is the so-called forced command. This forces a given key to always execute a specified command,
regardless of what was requested by the client. This is done using the following syntax:

[djm@roku ssh-tutoriall]$ cat ~/.ssh/authorized_keys

command="/bin/1ls -1 /tmp" ssh-rsa AAAAB3NzaClyc2EAAAABIwWAAAQEAocosorAF

8t6k6cmNXiPdP4eE63YFLr/3SjAGLzCKAJ4cWyAPIrIdeaudle+y5rj+1E6qEYM3N16S ju
2dL21+ia+toqA2SQCtUrZTBYVyX2D4f1x310K4pTI1WrYzGuj+k3h3tmbr5AdUOkbkxki/
xiLRx91gIuWC60qCsYJYVV10HOh2LRNaSh2YRPptf7aJk+4QcwUuub(BOg4WBznWWpwj7Y
eT7n57£38kTbSvatrbhrPWTRFYBqT4LJqvalkrxQNX143uW0Omf TMKV2pUBcMWroVR7Xo2d
4Gh6VS2rpKxng+CNjjj12TunVHRgbbdkuabM1l/HbpHubmta/dGkoFrQ== Laptop key

The example forces the use of the specified key to run /bin/ls -1 /tmp at login:

[djm@roku ssh-tutorial]$ ssh djm@hachi netstat
arch date gunzip mv sleep
ash dd gzip netstat sort

Notice how the command specified on the command-line was ignored. The same thing would have
happened if T had not specified a command. When a forced command is applied, the original
command that the client requested (if any) is stored in the $SSH_ORIGINAL_COMMAND environment
variable. This may be useful in scripts which restrict access to one of a set of predefined allowed
commands.

Another useful restriction is the from="" clause. This permits access using the specified key from
hosts listed within, but denies access to everyone else. Note that this denial does not prevent the
user from authenticating via another means, e.g. password. Basic wild card support is allowed in
from="" restrictions:

from="192.168.*" ssh-rsa AAAAB3NzaClyc2EAAAABIwAAAQEAocosorAF ...
The same restriction mechanism may also be used to set environment variables:
environment="FREEDOM=SLAVERY" ssh-rsa AAAAB3NzaClyc2EAAAABIw ...

There are a number of other restrictions relating to channel forwarding (explained in section 5)
and pseudo-terminal requests. These are important if you wish to fully restrict a key:

[djm@roku ssh-tutoriall]$ cat ~/.ssh/authorized_keys
from="192.168.*" ,command="cvs server",no-pseudo-terminal,no-agent-forwarding,
no-X11-forwarding,no-port-forwarding ssh-rsa AAAAB3NzaClyc2EAAAABIwAAAQ

This key is only allowed to connect from 192.168.0.0/16, is not allowed to request a pseudo-
terminal, is not allowed to set up any forwarding and is forced to use the command cvs server.
This, incidentally, is an excellent way to provide CVS only access for remote developers.

Highly restricted, password-less keys are very useful for automated tasks such as remote backup:

[djm@roku ssh-tutoriall]$ cat ~/.ssh/authorized_keys

command="cd /var/cvs ; tar cvf - ./x | bzip2 -9 | gpg -—encrypt -r djm@mindrot.org",
no-pty,no-agent-forwarding,from="192.168.*" ,no-X11-forwarding,no-port-forwarding
ssh-rsa AAAAB3NzaClyc2EAAAABIwWAAAQ

11

Connecting with the specified key to this host would yield an compressed, OpenPGP encrypted
backup of /var/cvs. This could be utilised with a password-less private key out of cron:

[djm@roku ssh-tutoriall$ sudo crontab -lu root
0 0 * * x ssh -i .ssh/id_rsa_backup hachi > /var/backup/cvs-‘date +)Y/m}d‘.tar.bz2.gpg

12

5 SSH Forwarding

The SSH protocol has the ability to multiplex various connections over a SSH channel. These
”forwardings” allow you to transport TCP/IP, X11 and ssh-agent sessions over a SSH session.

5.1 Authentication agent forwarding

The most simple example of a forwarding is ”agent forwarding”. This allows you to forward a
connection to a local ssh-agent (see section 4.3) over a SSH connection, so you can continue to
use it on the remote machine.

This is not switched on by default as it may lead to security problems if you forward your agent
(containing your private keys) to an untrusted host. Between trusted hosts, agent forwarding is
very useful.

Agent forwarding may be enabled on the command-line:
ssh -A trustedhost

Or in the client configuration file on a per-host basis:

[djm@roku ssh-tutoriall$ cat ~/.ssh/config
Host trustedhost
ForwardAgent yes

Once activated, it is just like having an agent running on the remote machine:

[djm@roku ssh-tutoriall$ ssh -A hachi

Last login: Thu Aug 29 12:58:01 2002 from localhost.localdomain

[djm@argon djm]$ ssh-add -1

2048 40:26:0a:59:€9:15:¢0:d6:85:87:ec:63:5d:cc:06:ab /home/djm/.ssh/id_rsa (RSA)
2048 39:9f:9c:47:29:be:94:f6:1e:e6:a5:97:2d:b0:74:c3 /home/djm/.ssh-old/id_rsa (RSA)

5.2 X11 forwarding

The SSH protocol can also forward X11 connections, allowing you to securely display remote X11
apps locally. Again, this option is not on by default for security reasons. It also requires that the
server end have an xauth binary accessible to set up the MIT-MAGIC-COOKIE-1 authentication
for your X server.

X11 forwarding may be enabled from the command-line or the client configuration file:

ssh -X hachi xclock

[djm@roku ssh-tutoriall$ cat ~/.ssh/config
Host trustedhost
ForwardX11 yes

5.3 Port forwarding
One of the most flexible uses of SSH is port forwarding, which allows SSH to forward arbitrary

TCP sessions. Since these connections are carried over the SSH channel, they are fully encrypted.
This makes port-forwarding useful as a way to add security to traditionally insecure protocols.

13

SSH supports port-forwarding from server to client (a.k.a local) and from client to server (a.k.a
remote).

Local port forwarding allows you to forward a port on the client machine through a SSH connection
to a host and port which the remove SSH server will connect to. Local port forwardings may be
specified using the -L localport:remotehost:remoteport command-line option. For example
this command will make the local port 8000 connect to the remote host 10.88.45.12 port 80:

ssh -L8000:10.88.45.12:80 somehost

It is also possible to enter these into the client configuration file:

Host fw.somedomain.com.au
LocalForward 8000 somehost.int.somesomain.com.au:80

This is very useful for administering machines which live behind firewalls. Using port-forwarding
over a connection to the firewall, you can gain access to all the TCP services of the protected
machines as though you are connecting from the firewall itself. Another useful trick is establishing
a port-forward to a remote proxy server to circumvent a local web-filter.

When using local port-forwarding the default behavior is to only allow connections from localhost
to the forwarded ports (this is done for security reasons). To allow other addresses to connect
to the forwarded port you need to specify the GatewayPorts option. This may be done on the
command-line as —ogatewayports=yes or in the client configuration file.

Remote port forwarding is the opposite: it connects a port on the server end to a host and port
on the client side. The syntax is similar: -R remoteport:localhost:localport. The following
example will cause connections to port 2500 on the remote end to connect to 10.34.54.12 port 25
on the local end:

ssh -R2500:10.34.54.12:25 somehost

5.4 Dynamic port forwarding

OpenSSH also supports a mode which allows ”dynamic” port-forwarding. In this configuration,
OpenSSH acts as a SOCKS4® proxy on a specified port. Clients connecting to this port can specify
a remote address and port they wish to connect to using the SOCKS4 protocol. This mode is
useful for "burrowing” through firewalls (if you have clients which support SOCKS4). Dynamic
port forwarding is setup using the -D port flag, where port is the port that the ssh client will
listen for SOCKS4 requests on.

Shttp:/ /www.socks.nec.com/protocol /socks4.protocol

14

http://www.socks.nec.com/protocol/socks4.protocol

6 SSH Implementations

6.1 OpenSSH

http://www.openssh.com/

OpenSSH is the most popular of the SSH implementations®. OpenSSH support both SSH protocols
(v.1 & v.2) and is distributed under an open-source BSD license. OpenSSH runs on *BSD, Linux,
Solaris, Windows (via CygWin), HP/UX, Irix, Mac OS X, AIX, SCO, Tru64 and many other
platforms.

OpenSSH is now included in most free operating system distributions (Linux, *BSD) as well as
several commercial ones (including Mac OS X and IBM AIX). It also forms the basis of the Solaris
9 SSH implementation.

6.2 SSH Communications Corporation

http://www.ssh.com/

SSH communications corporation was founded by Tatu Ylonen, the originator of SSH). They
provide commercial implementations of the SSH protocols v.1 and v.2.

They also offer non-commercial use of their v.1 implementation and a restricted version of their
v.2 implementation. Their products are supported under Windows, Linux and several flavors of
Unix.

6.3 Unix

e OSSH
ftp://ftp.pde.kth.se/pub/krypto/ossh/
A SSH protocol v.1 only implementation by Bjérn Gronvall, based on old code from Tatu
Ylonen which was released under an open-source license. OSSH formed the basis for early
versions of OpenSSH.

e FreSSH
http://www.fressh.org/
A free SSH protocol v.1 only implementation by Eric Haszlakiewicz, Thor Lancelot Simon
and Jason R. Thorpe.

e LSH/Psst
http://www.net.lut.ac.uk/psst/

A GPL SSH protocol v.2 implementation by Niels Méller. LSH is interesting for its support
of SPKI".

6.4 Windows

o PuTTY
http://www.chiark.greenend.org.uk/ sgtatham/putty/

A high-quality telnet and SSH protocol v.1 & v.2 implementation from Simon Tatham. It
includes a ssh-agent (pagent) as well scp and sftp support.

6Source: http://www.openssh.com/usage/index.html
7Simple Public Key Infrastructure - http://www.syntelos.org/spki/

15

http://www.openssh.com/
http://www.ssh.com/
ftp://ftp.pdc.kth.se/pub/krypto/ossh/
http://www.fressh.org/
http://www.net.lut.ac.uk/psst/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.openssh.com/usage/index.html
http://www.syntelos.org/spki/

6.5

6.6

TTSSH
http://www.zip.com.au/ roca/ttssh.html

A free plugin providing SSH protocol v.1 capability for Tera Term Pro®, a free terminal
emulator. Written by Robert O’Callahan.

Macintosh

NiftyTelnet SSH
http://www.lysator.liu.se/ jonasw/freeware/niftyssh/
An enhanced version of NiftyTelnet?, which provides SSH protocol v.1 support.

MacSSH
http://www.macssh.com/

A free SSH protocol v.2 implementation based on BetterTelnet!? and LSH.

Other

Top Gun SSH

http://www.ai/ iang/TGssh/

A SSH protocol v.1 implementation for palmtops running PalmOS. It requires PilotSSLeay!!.
MindTerm

http://www.appgate.org/

Mindterm is a Java implementation of the SSH protocols. Mindterm 1 is SSH protocol v.1
only and is open-source. More recent versions support protocol v.2 and are commercial.

Java-SSH
http://www.cl.cam.ac.uk/ fapp2/software/java-ssh/

A SSH protocol v.1 client with a confusing license.

SSH Plugin
http://www.mud.de/se/jta/doc/plugins/SSH.html
Another java SSH protocol v.1 client. Open-source (GPL) license.

8http://hp.vector.co.jp/authors/VA002416 /teraterm.html
9http://andrew2.andrew.cmu.edu/dist/niftytelnet.html
Ohttp://www.cstone.net/ rbraun/mac/telnet/
Mhttp:/ /www.isaac.cs.berkeley.edu/pilot /

16

http://www.zip.com.au/~roca/ttssh.html
http://www.lysator.liu.se/~jonasw/freeware/niftyssh/
http://www.macssh.com/
http://www.ai/~iang/TGssh/
http://www.appgate.org/
http://www.cl.cam.ac.uk/~fapp2/software/java-ssh/
http://www.mud.de/se/jta/doc/plugins/SSH.html
http://hp.vector.co.jp/authors/VA002416/teraterm.html
http://andrew2.andrew.cmu.edu/dist/niftytelnet.html
http://www.cstone.net/~rbraun/mac/telnet/
http://www.isaac.cs.berkeley.edu/pilot/

	About this document
	Copyright
	Disclaimer
	Audience
	A note on the examples
	Revision

	Introduction
	What is SSH
	History

	Basic SSH usage
	Remote login
	Initial server key discovery
	Executing commands remotely
	File transfer

	Public key authentication
	Generating public keys
	Public key authentication
	Using ssh-agent
	Public key restrictions

	SSH Forwarding
	Authentication agent forwarding
	X11 forwarding
	Port forwarding
	Dynamic port forwarding

	SSH Implementations
	OpenSSH
	SSH Communications Corporation
	Unix
	Windows
	Macintosh
	Other

