
Python Introduction

or
Stuffing Your Brains Full

with
Things You will Use in the Lab Course

Kent Engström
kent@unit.liu.se

What Do I Expect From You?

● I assume that you:
– know how to program in at least one other program

language

– want to learn Python

– will practice Python programming soon

– can absorb a lot of stuff, forget about the details, but
remember that you can look them up

● in the book
● on-line

Why Python?

● It's easy to learn and use
● It's fast to develop in
● It's readable (even for human beings)
● It's portable and free (open source)
● It has a good mix of working features from

several program language paradigms
● “Batteries Included”

Why Python? (contd)

● It's easy to use Python to control other software
(“scripting language”)

● It's easy to embed Python in other programs or
vice versa

● It's fun to program in Python

Any Drawbacks?

● Python is not a run-time speed daemon compared
to e.g. C or Fortran.
– Does it matter for your application?

– You can mix Python and other languages to get the
best of both worlds

● The dynamic typing is not trusted by static typing
enthusiasts

● Some newbies do not like the indentation-based
syntax

Relatives

● Python is mostly a procedural language, like C
and Fortran.

● Python is also object-oriented like Java and C++
(but you can ignore OO if you don't need it)

● Python has some functional language features
(higher-order functions etc)

● Python allows you to get work done (like Perl) by
giving you access to the operating system,
Internet protocols etc.

Python is Byte-Compiled

● Python is a byte-compiled language
– The source is transformed to instructions for a fictional

Python-optimized CPU

– Like Java, but not as focused on the byte-code as a
portable program delivery mechanism

– The source code is compiled when it is run, so you will
not have to invoke a compiler first

– The byte-code is saved for reuse (if you do not change
the source between runs)

Interactive Use

● You can start a Python interpreter and start typing
statements and expressions into it and see the
answers directly:

% python2.3
Python 2.3.4 (#1, Oct 26 2004, 16:42:40)
[GCC 3.4.2 20041017 (Red Hat 3.4.2-6.fc3)] on linux2
Type "help", "copyright", "credits" or "license" for
more information.
>>> x=42.17
>>> x*x+10
1788.3089000000002
>>>

Python Scripts

● Python scripts can be made executable in the
same way as shell scripts:
– Make the file executable:

● chmod +x myprog.py

– Add a suitable interpreter line at the top of the file. For
portability reasons, use:

● #!/usr/bin/env python

Getting Help

● Use the on-line docs
– http://www.python.org/doc

● Read the book you have
● Use the help() function interactively

– help(“open”) # help about the “open” function

A Small Example

seen = {}
num_dup = 0
f = open("/etc/passwd")
for line in f:
 (user, rest) = line.split(":",1)
 if user in seen:
 print "User",user,"has been seen before!"
 num_dup += 1
 else:
 seen[user]= 1 # Any value would do
print "Number of duplications:", num_dup

Python Types

Python Types

● We will take a look at the basic data types (and
operations) available in Python before we dig
into the syntax.

● Python uses dynamic typing:
– Variables refer to objects.

– Variables as such has no type.

– Objects have types (integers, strings, lists etc). You
cannot add 1 and “3”.

Integers

● Python has two kinds of integers:
– int (the normal kind, like C)

● Most likely 32 or 64 bits, signed

– long (like LISP bignum, bounded by memory size
only)

● Written and displayed as an integer with an “L” after

● In modern Python, an int is automatically
converted to a long if it would overflow

Integer Literals

● 4711 (an int)
● 4711L (a long entered explicitly)
● 0x1F (hexadecimal, decimal 31)
● 010 (octal, decimal 8)

– Do not add leading zeros if you do not intend the
integer to be treated as octal!

Floating Point Numbers

● The Python float format is equivalent to the C
double on the platform

● Literals written as you would expect (including
“E notation”).

● Python does not hide binary floating point quirks:
– If you enter 0.1 at the interactive prompt, it may be

echoed as 0.10000000000000001

– You should know why better than me ! :-)

Complex Numbers

● Python has a complex type (formed from two C
doubles).

● The imaginary part is entered with a “j”
appended:
– z=3.1+5.6j

● Parts can be accessed like this:
– z.real, z.imag

Operations

● The normal stuff: +, -, *, /, % (modulo), **
(power)

● Beware: a division between two integers is
carried out as an integer division:
– 8/3 => 2

– 8.0/3 or 8/3.0 or 8.0/3.0 => 2.6666666666666665

– This is going to change in future Python versions:
● 8/3 => 2.6666666666666665
● 8//3 => 2

Operations (contd)

● Bitwise stuff: &, |, ^, ~, <<, >>
● Absolute value: abs(x)
● Conversions: int(x), long(x), float(x), complex

(re,im)
● Rounding: round(1.2345,2) gives 1.23

The math and cmath Modules

● More functions are present in the math module,
that need to be imported (“import math”) first.

● Example:
– math.sin(x), math.exp(x), math.sqrt(x)

● Complex versions are present in the cmath
module
– math.sqrt(-1) raises an exception

– cmath.sqrt(-1) gives 1j

Strings

● Strings are a central data type in Python (as well
as in all similar languages)

● Strings store 8-bit characters or bytes
– Null (ASCII 0) bytes are not special like in C

– Long strings are allowed

● Strings are immutable, i.e. they cannot be
changed after they have been created
– We can create new strings from parts of existing ones,

of course

No Character Type

● Python has no character data type
– Strings are sequences of “characters”

– “Characters” are strings of length 1

● Works perfectly OK in practical life
● Conversion between “characters” and integers:

– ord('A') gives 65

– chr(65) gives 'A'

String Literals

● 'Single quotes around a string'
● ”Double quotes around a string also OK”
● 'This is not OK”, ”Nor is this'
● 'Can have the ”other type” inside.'
● ”Like 'this' too.”
● '''Triple single quotes allows newline inside string

(not removed)'''
● ”””Triple double quotes also OK.”””

Escapes and Raw Strings

● Backslashes for special characters, mostly like in
C:
– 'Line 1\nLine 2 after a newline'

– 'This \\ will become a single backslash'

– An unknown character after a backslash is not removed

● In raw strings backslashes are not special (good
for regular expressions and Windows file paths):
– r'This single \ gives a backslash here'

– r'\n' (length two string with a backslash and an 'n')

Basic String Operations

● len(s) gives the length of the string
● s+t concatenates two strings
● s*n repeats a string n times

– '='*10 gives '=========='

● str(x) converts x (e.g. a number) to a string
● s in t gives true iff s is a substring of t

Formating

● Like printf in C: format % args
– 'f(%f) = %f' % (x, value)

– 'Integer %d and a string: %s' % (n, s)

● The thing on the right side is a tuple (we will
return to them later)

Indexing

● To get a “character” from a string, we use (zero-
based) indexing:
– s[0] is the first (leftmost) character in the string

– s[1] is the second character in the string

● Negative indexes work from the end:
– s[-1] is the last character in the string

– s[-2] is the penultimate character in the string

● Indexing outside of the string raises an
IndexError exception

Slicing

● Substrings are extracted using slicing:
– 'Python'[1:4] gives 'yth' (not 'ytho'!)

– Imagine that the indices are between characters

● Omitted indices default to beginning or end:
– 'Python'[3:] gives 'hon'

– 'Python'[:3] gives 'Pyt'

– 'Python'[:] gives 'Python'

Slicing (contd)

● Negative indices work here too:
– 'Python'[1:-1] gives 'ytho':

● Slicing outside of the strings does not raise
exceptions:
– 'Python'[4:10] gives 'on'

– 'Python'[8:10] gives '' (an empty string)

String Methods

● String objects have methods we can call (object-
oriented!).

● s.upper() converts s to upper case (returning a
new string)
– 'Python'.upper() gives 'PYTHON'

● s.lower(), s.capitalize() also available
● s.find(t) gives index of first substring t in s:

– 'Python'.find('th') gives 2

– 'Python'.find('perl) gives -1 (meaning: not found)

String Methods (contd)

● s.replace(from,to) replaces all occurences:
– 'ABCA'.replace('A','DE') gives 'DEBCDE'

● s.strip() removes whitespace from beginning and
end

● s.lstrip() and l.rstrip() only strips from beginning
and end respectively

Splitting and Joining

● s.split() splits on whitespace
– 'Python rules'.split() gives ['Python', 'rules']

– The result is a list of strings

● s.split(sep) splits on the specified separator string
– a_long_string.split('\n') splits the string into lines

● sep.join(list) joins a list of strings using a
separator:
– ':'.join(['1','B','3']) gives '1:B:3'

Unicode Strings

● A separate type unicode is used to hold Unicode
strings
– u'ASCII literals OK'

● Conversion examples:
– u.encode('latin-1') converts to plain string in Latin-1

encoding

– u.encode('utf-8') converts to UTF-8 coding

– s.decode('utf-8') converts the plain strings from UTF-8
to a unicode string

Lists

● Lists are ordered collections of arbitrary objects
● Lists are not immutable, thus they can be changed

in-place
● Like vectors (one dimensional arrays) in other

languages
● Not linked lists like in LISP (accessing the last

element is not more expensive than accessing the
first)

Lists (contd)

● Lists have a certain size but can grow and shrink
as needed
– No holes, though: You cannot add a fourth element to

a two element list without first adding a third element.

● Adding or removing elements at the end is cheap
● Adding or removing elements at the beginning is

expensive

Indexing and Slicing

● Indexing and slicing works like for strings:
– mylist = ['Zero', 1, 'Two', '3']

– mylist[2] gives 'Two' (the element)

– mylist[2:] gives ['Two','3'] (a new list)

● We can change a list in-place using indexing to
the left of =:
– mylist[2] = 'Zwei'

– mylist is now ['Zero', 1, 'Zwei', '3']

● Slices also work!

List Operations

● Many string operations work here too:
– len(mylist) gives the length

– l1+l2 concatenates two lists

– mylist*n repeats the list
● [1,2] * 3 is [1,2,1,2,1,2]

● Other string operations are not available:
– No list.upper() etc

Adding Elements

● mylist.append(elem) appends an element at the
end of the list
– [1,2,3].append(4) gives [1,2,3,4]

● mylist.extend(otherlist) appends a whole list at
the end
– [1,2,3].extend([4,5]) gives [1,2,3,4,5]

● mylist.insert(pos, elem) inserts an element at a
certain position
– [1,2,3].insert(0, 'zero') gives ['zero',1,2,3]

Deleting Elements

● mylist.pop() deletes the last element in-place and
returns it:
– mylist = [1,2,3,4]

– mylist.pop() gives 4 and mylist is now [1,2,3]

● mylist.pop(n) deletes element n:
– mylist.pop(1) gives 2 and mylist is now [1,3]

Reversing and Sorting

● mylist.reverse() and mylist.sort() reverses and
sorts lists in-place, i.e. they return no value but
they change the list
– mylist = [2,1,3,4]

– mylist.sort() gives no return value, but mylist is now
[1,2,3,4]

– mylist.reverse() gives no return value, but mylist is
now [4,3,2,1]

Tuples

● Tuples are like lists, but they are immutable (like
strings)

● Literals are written using comma with parenthesis
as needed:
– () is the empty tuple (parenthesis needed!)

– (1,) is a tuple containing a single element (note trailing
comma)

– (1,2) is a tuple containing two elements

– (1,2,) is the same thing (trailing comma allowed but
not needed)

Tuple Operations

● len(t), t1+t2, t*n works
● indexing and slicing works (for access but not for

changing)
● No methods available

Lists vs Tuples

● Use lists for dynamic sequences of “similar”
things, i.e. a list of students attending a course.

● Use tuples for fixed size sequences of “different”
things, i.e.
– a tuple of coordinates in 3D space,

– a tuple of student name and student test score

Nesting

● Lists and tuples (and other things) can be
arbitrarily nested:
– x=[1,['foo',2],(3,[4,5])]

– x is a list of an integer, a list and a tuple

– x[1] is a list of a string and an integer

– x[2] is a tuple of an integer and a list

– x[2][1] is a list of two integers

Dictionaries

● Dictionaries (type dict) are associative arrays
– Perl programmers call their version hashes

● A dictionary can be indexed by any immutable
type, not just integers

● Literals:
– d1={} stores the empty dictionary in d1

– d2={1:2, 'foo': 3}

– d2 now maps the integer 1 to the integer 2, and the
string 'foo' to the integer 3

Indexing

● d2['foo'] gives 3
● d2['bar'] raises KeyError
● d2[1] = 10 overwrites the value for key 1
● d2[2] = 20 adds a new value for the key 2 (not

present before)
● del d2[1] deletes the item for key 1
● Slicing does not work as there is no concept of

order between the items in a dictionary

Avoiding KeyError

● key in dict return true iff an item for the key is
present in the dictionary

● dict.get(key) works like dict[key] but returns
None (a special null object) if no item for key is
present

● dict.get(key,default) returns the specified default
value instead of None if the item is not present

Getting Keys, Values or Items

● We can get the keys, values or items from a
dictionary (the order is not guaranteed absolutely
but consistent between the methods):
– d={1:2,10:20}

– d.keys() is [1,10]

– d.values() is [2,20]

– d.items() is [(1,2),(10,20)]

Overview of Container Types

● Sequences
– Immutable sequences

● Strings
– str: plain strings
– unicode: Unicode strings

● tuple: tuples

– Mutable sequences
● list: lists

● Mappings
– dict: dictionaries

None

● None is the only value of the type NoneType.
● It is used in multiple places to mean N/A, data

missing, do not care, etc.
● If a function does not return a value, it returns

None implicitly.
● A variable containing None is not the same thing

as a variable not being defined at all

Other Types

● We will encounter the file type later
● Internal types for things like

– functions

– modules

– classes, instances and methods

– even more internal stuff

● Types defined by extension modules
– e.g. images, database connections

Python Statements

Statements

● Python programs consists of statements, e.g.
– assignments like x=10

– print statements to output things

– if statements for selection

– while or for for loops

● Statements have no values (we cannot speak of
the value of a print statement or an assignment)

● Statements have “side effects”

Expressions

● Statements can contain expressions (things that
have a value):
– n=n+1 (where n+1 is an expression used to calculate

the value we are to assign to n)

– print math.sin(x*10)

Expression Statements

● An expression can be used as a statement in a
program
– n+1 is a valid statement but utterly useless in a

program (calculate n+1 and throw the value away)

● This is mostly used to call functions (a function
call is an expression):
– process_file('myfile.txt')

– If the function happened to return a value, we threw it
away above

No “Statement Expressions”

● We cannot have statements (e.g. assignments)
inside expressions in Python.

● This means that we cannot use the following trick
from C:
– if ((var=getsome() == 0) ...

● This protects us from common errors like this:
– if var=1

Some Basic Syntax

● Comments begin at a # characters and continues
to the end of the line

● No semicolon needed at the end of the line
– But we can use it to string together statements on the

same line:
● a=10; b=20; c=(a+b)/2

● Backslash at end of line allows us to continue a
line
– This is not needed inside a “parenthetical expression”

started by (, [or {.

Assignment Statements

● The basic form is written as var=expression, e.g.
– x=10

– n=n+1

– s=s+'\n' + s2.strip() + ':'

● Assignment uses =, equality testing uses ==
● Variable names

– begin with a character or underscore

– continues with characters, digits and/or underscores

– are case sensitive

“Fancy” Assignments

● Multiple assignments work:
– x=y=z=0

● Decomposing lists and tuples work:
– t=(1,2)

– x,y=t means x=1, y=2

● We can use this to swap to variables:
– x,y = y,x

Augmented Assignments

● x += 1 works like x=x+1
● x *= 2 works like x=x*2
● But: mutable objects may be changed in-place

– list += [4,5] behaves like list.extend([4,5]) not
list=list+[4,5]

● There is no n++ or ++n like in C.

Values and References

● A variable contains a reference to an object, not
the value as such

● This is boring as long as we use only immutable
objects:
– a=1 # create an object with value 1, store reference in a

– a=a+2 # get object refered to by a, get object with
value 2, perform addition to get a new object with
value 3, store reference to that object in variable a

Aliasing

● But what can happen when the objects are
mutable?
– a=[1,2,3] # create a list, store a reference to it in a

– b=a # store the same reference in variable b

– b[0]=10 # get the list referenced by b, change element
0...

– a[0] is of course also 10 now, as a and b refers to the
same list object!

Aliasing (contd)

● Often, this is what we want, but sometimes we
need to copy a mutable object so we do not
change the original when doing operations on the
copy. Use
– mylist[:] to get a copy of the list mylist

– mydict.copy() to get a copy of the dictionary mydict

● These are shallow copies
● New Python programmers tend to be too

concerned about copies and aliasing

Garbage Collection

● We never need to deallocate objects explicitly.
● When the last reference to an object goes away, it

is deleted and its memory reclaimed:
– s=”Waste”*10000 # create a big string

– t=(1,s) # a reference to s is in the tuple now

– s=1 # we lost one reference to the big string but the one
in the tuple remains

– t=(1,2) # we now lost the last reference to the string
and it is deleted.

Print Statements

● A simple way to output data to the standard
output is provided by the print statement:
– print 10

– print x

– print 'Value of', varname, 'is', value

– print 'Value of %s is %s' % (varname, value)

– print 'Newline at end of this'

– print 'No newline at end of this',

Conditional Statements

● Python provides an if-elif-else-statement:

Plain if statement
if temp < 10:
 print “Temperature too low.”

Dual if-else statement
if x < 0:
 print “No roots can be found.”
else:
 print “Will solve for roots.”

Conditional Statements (contd)

Multiple choices
if temp < 10:
 print “Temperature too low.”
 start_heater()
elif temp < 30:
 print “Temperature OK.”
elif temp < 100:
 print “Temperature too high.”
 start_air_conditioner()
else:
 print “We are boiling!”
 evacuate_building()

Indentation Sensitive Syntax

● You saw no braces or begin-end pairs delimiting
the statements in the compound if-elif-else
statement

● Python uses the indentation itself to infer
program structure.

● This is smart, as you should always indent your
code properly!

● The Python mode in Emacs supports this, so it is
no big deal if you use the One True Editor.

Nested Compound Statements

● This is what a nested compound statement looks
like.

if a == b:
 print “A and B are equal.”
 if b == c:
 print “All three are equal!”
 else:
 print “But C is different!”
elif a < b:
 print “A is smaller than B.”
else:
 print “A is greater than B.”

Comparison Operators

● We have the usual set of operators to compare
things:
– == tests for equality

– != (or <>) tests for inequality

– <, <=, >, >= are also there

– Numbers are compared without caring about type: 0 ==
0.0, 0.0 == 0j

– Sequences are compared lexicographically: (1,2) <
(2,1)

Booleans

● The comparison operators return values of type
bool: True or False.

● Earlier versions of Python used 1 for True and 0
for False.

● Compatibility Hack: bool is a sublass of int,
where 1 is printed as True and 0 as False.
– True + 10 gives 11, but please do not ever write code

like that!

Truth Values

● Python considers every value to be true or false,
not only the bools:
– True is true and False is false, of course

– Numerical values are false if zero, true otherwise

– Containers are false if they are zero, true if they
contain items.

– None is false

– User-defined classes can contain code to determine if
they are true or false

Logical Operators

● Python has “and” and “or” operators, short-
circuiting like in C:
– if x>0 and 1/x > 10: ...

– We do not risk dividing by zero in the second part
above. If x is zero, the second part is not evaluated.

● The “not” operator return True when given a
false value and False when given a true value:
– not False gives True

– not True gives False

– not 2 gives False (because 2 is a true value)

Pre-tested Loop Statements

● A pre-tested loop where we loop as long as the
condition is true (no loops at all if the condition is
false the first time around):

x=1
while x <= 10:
 print “Line number”,x,”of 10.”
 x+=1

Break and Continue Statements

● The break statement to exit the innermost loop
immediately.
– We use “while True:” if we need an endless loop (and

then we can exit it using break anyway)

● The continue statement skips the rest of the
innermost loop body.

● We cannot use this to exit or skip more than the
innermost loop.

Iteration Loop Statements

● To loop over sequences, we do not use the while
statement and indexing. Instead, we have the for
loop:

choices = ['Vanilla', 'Chocolate', 'Lemon']
print 'Choose ice-cream'
print ''
for c in choices:
 print '' + c
print ''

Iteration

● The for loop works for all containers
– list and tuples are iterated element by element

– strings are iterated “character” by “character”.

– dictionary iteration is over the keys in an undefined
order

● User-defined classes can specify their own
iteration behaviour

Break or Else...

● For loops (and while loops too) can have an else:
part that is only taken on “normal exit” but not
when break is used to exit the loop:

for e in long_list:
 if is_good(e):
 print “A good element was found, done.”
 break
else:
 print “No good element was found.”

range and xrange

● The range expression lets us use for loops to loop
over numerical ranges:
– range(5) gives [0,1,2,3,4] (five items)

– range(10,15) gives [10,11,12,13,14]

– for i in range(1,11): print “Line %d of 10” % i

● If the range is large, it is wasteful to construct the
whole list in memory. We can use xrange instead
of range then.
– It creates a “fake list” that works just like the one range

builds for the purpose of iteration.

Python Functions

Functions

● Every high-level language have some kind of
subroutine concept.

● Python has functions
● Python does not have procedures

– Functions that end without calling the return statement
implicitly returns None.

– If we do not care about the return value from a
functions, it is silently discarded

Functions (contd)

● Functions are defined by def:

def origin_distance(x,y):
 return math.sqrt(x*x + y*y)

def print_var(name, value):
 print “Value of”, name, “is”, value

def func_with_no_arg():
 return 42

Calling Functions

● Functions are called using parentheses:
– dist = origin_distance(x1,y1)

– print_var('x', 4711)

– answer = func_with_no_arg()

● We cannot omit the parentheses in the last
example!
– We would then assigned the function object to answer,

not the result of calling the function

– Functions are first-class objects that can be stored in
variables

Arguments

def f(x, y, verbose=0, indent=4): ...
f(1,2) # Ok, defaults for verbose and indent
f(1,2,1) # Ok, verbose=1, default for indent
f(1,2, indent=8) # Ok, default for verbose
f(verbose=2, y=2, x=1) # Ok, default for indent
f(1) # Error
f(verbose=2, 1, 2) # Error

● Keyword arguments and defaults are possible:

Call by Value

● Python uses call by value
– def f(x): x = 3

– y=2; f(y); print y

– We will get “2” printed. The assignment to x in f does
not change the value outside the function body

● But mutable objects can change:
– def f(x): x[0] = 3

– y=[1,2]; f(y); print y

– We will get [3,2] printed

Local Variables

● A variable assigned in a function is local and
does not affect a variable with the same name
outside the function:
– def f(x): z=3

– z=1; f(0); print z

– We will get “1” printed.

Accessing Global Variables

● We can access global variables inside a function:
– def f(x): print g

– g=”Global!”

– f(0)

– This will print “Global!” just like we expected

Assigning to Global Variables

● To be allowed to assign to a global variable we
have to declare it using a global statement. The
code below will print “17” and then “20”.

x = 17
def f():
 global x
 print x
 x = 20
f()
print x

Python Modules

Modules

● Programs can be divided into several files.
● Each file defines a module.
● Each module has its own global namespace (there

is no global namespace above all modules).
– Modules thus provide namespace isolation so two

variables or functions with the same name in two
different modules doesn't clash.

● Modules enable code reuse
– Python already provides a lot of built-in modules for us

to use.

Import Statements

● To get access to a module, we use the import
statement:
– import foo

● This imports foo.py
– from the same directory as the running program or

– from a directory on the python module path

● After the import, we can refer to global variables,
functions etc in foo using “foo.” before the name,
like this: foo.fak, foo.x

Import into Our Namespace

● Using a special form we can import some names
from a module into our own namespace:
– from foo import fak, x

– from math import sin, cos, tan, sqrt, exp

● We can also import all names from a module into
our own namespace:
– from foo import *

● A module can control what names are exported
when using the “*” import.

Import Runs... Once

● The first time a module is imported during the
running of a program, the code in the module
runs:
– Even def statements defining functions are executable

code that is run to perform the defining

● If the module is imported again the code is not
run again
– Only the importer's namespace is updated

● Avoid cyclic module dependencies

Packages

● Complicated modules can be subdivided
hierarchically.

● Such modules are called packages and are outside
the scope of this introduction.

Byte-Compiled Code Saved

● We mentioned earlier that Python code is byte-
compiled.

● When a module is imported and thus byte-
compiled, the compiled code is saved in a file
with a .pyc extension:
– foo.py is compiled to foo.pyc

– The byte-compiled code is loaded instead of the source
code the next time the module is imported (if the
source file has not changed)

Python Object Orientation

Object-Orientation

● Python's Object Orientation
– is not mandatory to use in your programs

– has inheritance (even multiple)

– has not overloading (how would that be possible?)

– makes all methods virtual (redefinable by subclasses)

– doesn't really protect object variables from “cheaters”

Class Definition

● Classes are defined and objects created from
them like this:

from math import sqrt
class Coord:
 def __init__(self, x, y):
 self.x = x
 self.y = y
 def origin_distance(self):
 return sqrt(self.x**2 + self.y**2)
 def is_at_origin(self):
 return self.origin_distance() == 0

c1 = Coord(10,20) # create and run __init__
print c1.origin_distance()

Classes (contd)

● When we call a method on an object, the
corresponding method in the class is called, with
the object as an implicit first argument that we
get into the self argument.

● Also note the difference between self.x (object
attribute) and x (local variable from the argument
list) in the __init__ method.

Inheritance

● Let us define a subclass
– The is_at_origin method now comes from the

superclass Coord while we implement origin_distance
here:

class ManhattanCoord(Coord):
 def origin_distance(self):
 return abs(self.x) + abs(self.y)

c2 = ManhattanCoord(5,5)
if c2.is_at_origin(): print "Impossible!"

Emulating Built-in Objects

● By defining certain special methods in our
classes, our objects can behave like numbers,
lists, etc. Examples:
– __add__(self, other): addition using +

– __getitem__(self, index): indexing

– __len__(self): len(object)

More to Learn

● There is more to learn about OO in Python, of
course, such as:
– Multiple inheritance

– Static and class methods

– “New-style” OO (unification of classes and types)

● This is beyond the scope of this introduction.

Python Exceptions

Exceptions

● Python handles errors and other exceptional
occurrences by raising exceptions.

● If not caught, they will cause the program to be
aborted.

>>> a=1/0; print “not reached”
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero
>>>

Catching Exceptions

● Exceptions are caught by placing the “dangerous”
code in a try:-except: compound statement.
– If dx should be undefined below, we get a NameError

instead, which is not caught by the handler.

try:
 slope = dy/dx
 vertical = 0
except ZeroDivisionError:
 slope = None
 vertical = 1

Catching Exceptions (contd)

● Multiple handlers can be specified
● The division in the first handler is not protected

by the second handler
● Avoid the last kind of handler if possible

try:
 res = dangerous_function()
except (KeyError, NameError):
 print "Trouble type A"
 x=a/b
except ZeroDivisionError:
 print "Trouble type B"
except:
 print "Unknown exception caught"

Defining Our Own Exceptions

● We define our own exceptions by subclassing the
built-in Exception class
– We can then raise it using a raise statement.

– The pass statement in the first line is a no-op for use
where the syntax requires a statements and we have
nothing to do.

class MyOwnError(Exception): pass
def f(foo):
 if foo > 100: # Too high
 raise MyOwnError

Guaranteed Finalization

● Another form of try: can be used to guarantee that
a piece of cleanup code is run regardless of how a
dangerous piece of code is executed.

def f():
 rsrc = alloc_external_expensive_resource()
 try:
 # This code may raise an exception
 res = call_dangerous_code()
 finally:
 dealloc_resource(rsrc)

Python's Included Batteries

File Objects

● You get them with open for normal files:
– f=open('file.txt') # for reading

– f=open('file.txt', 'r) # same

– f=open('file.txt', 'w) # for writing

– f=open('file.txt', 'a) # for appending

– f=open('file.txt', 'rb) # b for binary mode on Windows

● Some modules give you file-like objects to play
with (e.g. urllib)

File Objects (contd)

● Reading
– f.read() # reads the whole file

– f.read(10) # reads 10 bytes

– f.readline() # reads a line including newline

– for line in f: ... # modern way of reading line by line

● Writing
– f.write(string)

● Closing
– f.close()

Module sys

● Misc system stuff:
– sys.stdin, sys.stdout, sys.stderr: file objects

– sys.argv: program name + argument list

– sys.environ: Unix environment as a dictionary

– sys.path: Python module search path

– sys.exit(ret): exit the program with a return code

– ...

Modules math and cmath

● We have already mentioned these
● If it is in the C math library, it is here too.

Module re

● Regular expressions
– Perl compatible, to a large extent

m = re.match(r'([^=]+) *= *(.*)', line)
if m:
 param, value = m.group(1,2)
else:
 print “Bad configuration line found”

Module struct

● Handle binary data structures (in files etc)

Pack into 16-bit unsigned, big endian
b = struct.pack(">HH", 640, 480)
b is '\x02\x80\x01\xe0'

Unpack them again
(w, h) = struct.unpack(">HH", b)
w is 640, h is 480

Module random

● Pseudorandom numbers:
– i = random.randrange(10,20) # 10 <= i < 20

– r = random.random() # 0.0 <= r < 1.0

– dir = random.choice([“left”, “right”, “up”, “down”])

– random.shuffle(list)

– random.seed(something)

Operating System Access

● Basic OS access
– getcwd, chdir, getpid, getuid, setuid...

– rename, unlink, ...

– system, fork, exec, ...

● Path handling in os.path
– dir, file = os.path.split(path), ...

● More similar modules:
– time, stat, glob, fnctl, pwd, grp, signal, select, mmap,

tty, pty, crypt, resource, nis, syslog, errno, tempfile, ...

Running Commands

● os.system(runthis)
● Module popen2
● Module commands
● Module subprocess in Python 2.4

Threading

● thread
– Low level thread support

● threading
– Higher level (more like Java)

– Synchronization primitives

● Queue
– Thread-safe queue

Internet Protocols and Format

● socket
● urllib, urllib2
● httplib, ftplib, gopherlib
● cgi, Cookie
● poplib, imaplib, smtplib, nntplib, telnetlib, dnslib
● email, mimetools, mailbox, mhlib
● binhex, uu, binascii, base64, quopri
● xdrlib, gzip, zlib

Even More Stuff Included

● Serialising
● XML support
● Testing
● Profiling
● TkInter GUI
● Option parsing
● ...

Available on the Net

● Database Glue (MySQL, PostgreSQL, ...)
● Python Imaging Library (PIL)
● Numarray: array handling and computations
● ...

Thanks for Not Falling Asleep

Kent Engström
kent@unit.liu.se

