Python Introduction

or
Stuffing Your Brains Full
with
Things You will Use in the Lab Course

Kent Engstrom
kent(@unit.liu.se

What Do I Expect From You?

* | assume that you:

— know how to program in at least one other program
language

— want to learn Python
— will practice Python programming soon

— can absorb a lot of stuff, forget about the details, but
remember that you can look them up

* in the book

® on-line

Why Python?

It's easy to learn and use
It's fast to develop 1n
It's readable (even for human beings)

It's portable and free (open source)

It has a good mix of working features from
several program language paradigms

“Batteries Included”

Why Python? (contd)

* It's easy to use Python to control other software
(“scripting language”)

* [t's easy to embed Python in other programs or
vice versa

* It's fun to program in Python

Any Drawbacks?

* Python 1s not a run-time speed daemon compared
to e.g. C or Fortran.

— Does 1t matter for your application?

— You can mix Python and other languages to get the
best of both worlds

* The dynamic typing 1s not trusted by static typing
enthusiasts

e Some newbies do not like the indentation-based
syntax

Relatives

* Python i1s mostly a procedural language, like C
and Fortran.

* Python 1s also object-oriented like Java and C++
(but you can 1gnore OO 1f you don't need it)

* Python has some functional language features
(higher-order functions etc)

* Python allows you to get work done (like Perl) by
giving you access to the operating system,
Internet protocols etc.

Python 1s Byte-Compiled

* Python is a byte-compiled language

— The source 1s transformed to instructions for a fictional
Python-optimized CPU

— Like Java, but not as focused on the byte-code as a
portable program delivery mechanism

— The source code 1s compiled when it 1s run, so you will
not have to invoke a compiler first

— The byte-code 1s saved for reuse (if you do not change
the source between runs)

Interactive Use

* You can start a Python interpreter and start typing
statements and expressions into it and see the
answers directly:

% pyt hon2. 3
Python 2.3.4 (#1, Cct 26 2004, 16:42:40)
[GCC 3.4.2 20041017 (Red Hat 3.4.2-6.fc3)] on |inux2

Type "hel p", "copyright", "credits" or "license" for
nore | nformati on.
>>> x=42. 17

>>> x*x+10
1788. 3089000000002
>>>

Python Scripts

* Python scripts can be made executable 1n the
same way as shell scripts:

— Make the file executable:
e chnod +x nyprog. py

— Add a suitable interpreter line at the top of the file. For
portability reasons, use:

e #! [usr/ bi n/ env pyt hon

Getting Help

e Use the on-line docs

* Read the book you have

e Use the help() function interactively
— help(“open’) # help about the “open’ function

A Small Example

seen = {}
numdup = 0
f = open("/etc/passwd")
for line in f:
(user, rest) =line.split(":",1)
| f user I n seen:
print "User",user,"has been seen before!"
num dup += 1
el se:
seenfuser]= 1 # Any val ue woul d do
print "Nunber of duplications:”, num dup

Python Types

Python Types

* We will take a look at the basic data types (and
operations) available in Python before we dig
into the syntax.

* Python uses dynamic typing:

— Variables refer to objects.
— Variables as such has no type.

— Objects have types (integers, strings, lists etc). You
cannot add 1 and “3”.

Integers

* Python has two kinds of integers:

— int (the normal kind, like C)
* Most likely 32 or 64 bits, signed

— long (like LISP bignum, bounded by memory size
only)

* Written and displayed as an integer with an “L” after

* In modern Python, an int 1s automatically
converted to a long 1f 1t would overflow

Integer Literals

* 4711 (an 1nt)
* 4711L (a long entered explicitly)

* Ox1F (hexadecimal, decimal 31)

* 010 (octal, decimal &)

— Do not add leading zeros 1f you do not intend the
integer to be treated as octal!

Floating Point Numbers

* The Python float format i1s equivalent to the C
double on the platform

* Literals written as you would expect (including
“E notation”).

* Python does not hide binary floating point quirks:

— If you enter 0.1 at the interactive prompt, it may be
echoed as 0.10000000000000001

— You should know why better than me ! :-)

Complex Numbers

* Python has a complex type (formed from two C
doubles).

* The imaginary part is entered with a
appended:

- 7=3. 1+5. 6]
e Parts can be accessed like this:
-z.real, z.img

Operations

* The normal stuff: +, -, *, /, % (modulo), **
(power)

* Beware: a division between two integers 1s
carried out as an integer division:

- 8/3=>2
— 8.0/3 or 8/3.0 or 8.0/3.0 => 2.6666666666666665

— This 1s going to change 1n future Python versions:

* 8/3 =>2.6666666666666665
* 8//3=>72

Operations (contd)

* Bitwise stuff: &, |, *, ~, <<, >>

* Absolute value: abs(x)

* Conversions: 1nt(x), long(x), float(x), complex
(re,1m)

* Rounding: round(1.2345,2) gives 1.23

The math and cmath Modules

* More functions are present in the math module,
that need to be imported (“import math’) first.

* Example:
— math.sin(x), math.exp(x), math.sqrt(x)

* Complex versions are present in the cmath
module

— math.sqrt(-1) raises an exception

— cmath.sqrt(-1) gives 1j

Strings

* Strings are a central data type in Python (as well
as 1n all similar languages)

* Strings store 8-bit characters or bytes
— Null (ASCII 0) bytes are not special like in C
— Long strings are allowed

* Strings are immutable, 1.¢. they cannot be
changed after they have been created

— We can create new strings from parts of existing ones,
of course

No Character Type

* Python has no character data type

— Strings are sequences of “characters”

— “Characters” are strings of length 1

* Works perfectly OK 1n practical life
* Conversion between “characters” and integers:
— ord('A'") gives 65
— chr(65) gives 'A’

String Literals

'Single quotes around a string’

”’Double quotes around a string also OK™
"This 1s not OK”, ”’Nor 18 this'

'Can have the “other type” inside.'’

’Like 'this' too.”

"Triple single quotes allows newline 1nside string
(not removed)"

>’ Triple double quotes also OK.”””

Escapes and Raw Strings

* Backslashes for special characters, mostly like 1n
C:
— 'Line 1\nLine 2 after a newline'
— "This \\ will become a single backslash'

— An unknown character after a backslash 1s not removed

* In raw strings backslashes are not special (good
for regular expressions and Windows file paths):

— 1'This single \ gives a backslash here'

- 1r"\n' (Iength two string with a backslash and an 'n')

Basic String Operations

len(s) gives the length of the string
s+t concatenates two strings

s*n repeats a string n times

'

- '="*10 g1ves '
str(x) converts x (e.g. a number) to a string

s 1n t gives true 1ff s 1s a substring of t

Formating

* Like printf in C: format % args
— "f(%f) = %1 % (x, value)
— 'Integer %d and a string: %s' % (n, s)

* The thing on the right side is a tuple (we will
return to them later)

Indexing

* To get a “character” from a string, we use (zero-
based) indexing:

— s[0] 1s the first (leftmost) character in the string
— s[1] 1s the second character in the string
* Negative indexes work from the end:

— s[-1] 1s the last character 1n the string

— s[-2] 1s the penultimate character in the string

* Indexing outside of the string raises an
IndexError exception

Slicing

* Substrings are extracted using slicing:
— 'Python'[1:4] gives 'yth' (not 'ytho'!)
— Imagine that the indices are between characters

* Omitted indices default to beginning or end:

-

— 'Python'[3:] gives 'hon'
— '"Python'[:3] gives Pyt
— '"Python'[:] gives 'Python'

-

Slicing (contd)

* Negative indices work here too:
— 'Python'[1:-1] gives 'ytho":

* Slicing outside of the strings does not raise
exceptions:

— 'Python'[4:10] gives 'on'
— 'Python'[8:10] gives " (an empty string)

String Methods

String objects have methods we can call (object-
oriented!).

s.upper() converts s to upper case (returning a
new string)

— '"Python'.upper() gives 'PYTHON'
s.lower(), s.capitalize() also available
s.find(t) gives index of first substring t 1n s:
— '"Python".find('th") gives 2

— 'Python'.find("perl) gives -1 (meaning: not found)

String Methods (contd)

* s.replace(from,to) replaces all occurences:
- '"ABCA'.replace('A','DE') gives 'DEBCDE'

* s.strip() removes whitespace from beginning and
end

* s.Istrip() and Lrstrip() only strips from beginning
and end respectively

Splitting and Joining

* s.split() splits on whitespace
— '"Python rules'.split() gives ['Python', 'rules']
— The result 1s a [ist of strings

* s.split(sep) splits on the specified separator string
— a_long_string.split("\n') splits the string into lines

* sep.join(list) joins a list of strings using a
separator:

- "'jomn(['1",'B",'3']) gives '1:B:3'

Unicode Strings

* A separate type unicode 1s used to hold Unicode
strings

— u'ASCII literals OK!
* Conversion examples:

— u.encode('latin-1") converts to plain string in Latin-1
encoding

— u.encode('utf-8') converts to UTF-8 coding

— s.decode('utf-8') converts the plain strings from UTF-8
to a unicode string

[1sts

* Lists are ordered collections of arbitrary objects

* Lists are not immutable, thus they can be changed
in-place

* Like vectors (one dimensional arrays) in other
languages

* Not linked lists like 1n LISP (accessing the last

element 1s not more expensive than accessing the
first)

Lists (contd)

* Lists have a certain size but can grow and shrink
as needed

— No holes, though: You cannot add a fourth element to
a two element list without first adding a third element.

* Adding or removing elements at the end 1s cheap

* Adding or removing elements at the beginning 1s
expensive

Indexing and Slicing

* Indexing and slicing works like for strings:
— mylist = ['Zero', 1, "Two', '3']

— mylist[2] gives "Two' (the element)

— mylist[2:] gives ["Two','3'] (a new list)

* We can change a list in-place using indexing to
the left of =:

- mylist[2] = "Zwel'
— mylist 1s now ['Zero', 1, 'Zwer', '3']

e Slices also work!

List Operations

* Many string operations work here too:

— len(mylist) gives the length
— 11+12 concatenates two lists
— mylist*n repeats the list
° [1,2] *31s[1,2,1,2,1,2]
* Other string operations are not available:

— No list.upper() etc

Adding Elements

* mylist.append(elem) appends an element at the
end of the list

- [1,2,3].append(4) gives [1,2,3,4]

* mylist.extend(otherlist) appends a whole list at
the end

- [1,2,3].extend([4,5]) gives [1,2,3,4,5]

* mylist.insert(pos, elem) inserts an element at a
certain position

- [1,2,3].1nsert(0, 'zero') gives ['zero',1,2,3]

Deleting Elements

* mylist.pop() deletes the last element in-place and
returns it:

- mylist=11,2,3,4]
— mylist.pop() gives 4 and mylist 1s now [1,2,3]
* mylist.pop(n) deletes element n:

— mylist.pop(1) gives 2 and mylist 1s now [1,3]

Reversing and Sorting

* mylist.reverse() and mylist.sort() reverses and
sorts lists 1n-place, 1.e. they return no value but
they change the list

~ mylist = [2,1,3,4]

— mylist.sort() gives no return value, but mylist 1s now
[1,2,3,4]

— mylist.reverse() gives no return value, but mylist 1s
now [4,3,2,1]

Tuples

* Tuples are like lists, but they are immutable (like
strings)

* Literals are written using comma with parenthesis
as needed:

— () 1s the empty tuple (parenthesis needed!)

— (1,) 1s a tuple containing a single element (note trailing
comma)

— (1,2) 1s a tuple containing two elements

- (1,2,) 1s the same thing (trailing comma allowed but
not needed)

Tuple Operations

* len(t), t1+t2, t*n works

* indexing and slicing works (for access but not for
changing)

e No methods available

Lists vs Tuples

e Use lists for dynamic sequences of “similar”
things, 1.e. a list of students attending a course.

e Use tuples for fixed size sequences of “different”
things, 1.e.

— a tuple of coordinates 1n 3D space,

— a tuple of student name and student test score

Nesting

* Lists and tuples (and other things) can be
arbitrarily nested:

- x=[1,['t00',2],(3,[4,5])]

— x 1s a list of an integer, a list and a tuple

1
2
2

is a list of a string and an integer
is a tuple of an integer and a list

[1] 1s a list of two 1ntegers

Dictionaries

* Dictionaries (type dict) are associative arrays
— Perl programmers call their version hashes

* A dictionary can be indexed by any immutable
type, not just integers

* Literals:
— d1={} stores the empty dictionary in d1l
- d2={1:2, 'foo': 3}

— d2 now maps the integer 1 to the integer 2, and the
string 'foo' to the integer 3

e d

° d2

2
e d2[
2

B ™
C-— A

Indexing

'fo0'] gives 3

"

-

bar']

1

raises KeyError

] = 10 overwrites the value for key 1

= 20 adds a new value for the key 2 (not

présént before)
e del d2[1] deletes the 1tem for key 1

e Slicing does not work as there 1s no concept of
order between the items 1n a dictionary

Avoiding KeyError

* key in dict return true 1ff an item for the key 1s
present 1n the dictionary

* dict.get(key) works like dict[key] but returns
None (a special null object) 1f no item for key 1s
present

e dict.get(key,default) returns the specified default
value 1nstead of None 1f the 1tem 1s not present

Getting Keys, Values or Items

* We can get the keys, values or items from a
dictionary (the order 1s not guaranteed absolutely
but consistent between the methods):

- d={1:2,10:20}

- d.keys() 1s [1,10]

— d.values() 1s [2,20]

— d.items() 1s [(1,2),(10,20)]

Overview of Container Types

* Sequences

— Immutable sequences

* Strings
— str: plain strings
— unicode: Unicode strings

* tuple: tuples
— Mutable sequences
* [ist: lists
* Mappings

— dict: dictionaries

None

* None 1s the only value of the type NoneType.

* It 1s used 1n multiple places to mean N/A, data
missing, do not care, etc.

e [f a function does not return a value, it returns
None implicitly.

* A variable containing None 1s not the same thing
as a variable not being defined at all

Other Types

* We will encounter the file type later
* Internal types for things like

— functions

— modules

— classes, 1nstances and methods
— even more internal stuff

* Types defined by extension modules

- ¢.g. 1Images, database connections

Python Statements

Statements

* Python programs consists of statements, €.g.

— assignments like x=10
— print statements to output things
— 1f statements for selection

— while or for for loops

e Statements have no values (we cannot speak of
the value of a print statement or an assignment)

e Statements have “side effects”

Expressions

e Statements can contain expressions (things that
have a value):

— n=n+1 (where n+1 1s an expression used to calculate
the value we are to assign to n)

— print math.sin(x*10)

Expression Statements

* An expression can be used as a statement 1n a
program

— n+1 1s a valid statement but utterly useless in a
program (calculate n+1 and throw the value away)

* This 1s mostly used to call functions (a function
call 1s an expression):

— process_file('myfile.txt')

— If the function happened to return a value, we threw 1t
away above

No “Statement Expressions”

* We cannot have statements (€.g. assignments)
inside expressions in Python.

* This means that we cannot use the following trick
from C:

— 1f ((var=getsome() == 0) ...
* This protects us from common errors like this:

— 1f var=1

Some Basic Syntax

e Comments begin at a # characters and continues
to the end of the line

e No semicolon needed at the end of the line

— But we can use 1t to string together statements on the
same line:

* a=10; b=20; c=(atb)/2

e Backslash at end of line allows us to continue a
line

— This 1s not needed 1nside a “parenthetical expression”
started by (, [or {.

Assignment Statements

* The basic form 1s written as var=expression, €.g.
- x=10
- n=n+1
— s=st'\n' + s2.strip() + "'
* Assignment uses =, equality testing uses ==
* Variable names

— begin with a character or underscore
— continues with characters, digits and/or underscores

— are case sensitive

“Fancy” Assignments

* Multiple assignments work:
- x=y=z=0

* Decomposing lists and tuples work:
- t=(1,2)
- X,y=t means x=1, y=2

* We can use this to swap to variables:

- XYy —~V.X

Augmented Assignments

x += 1 works like x=x+1

X *= 2 works like x=x*2
But: mutable objects may be changed 1n-place

— list +=[4,5] behaves like list.extend([4,5]) not
list=list+[4,5]

There 1s no n++ or ++n like 1n C.

Values and References

* A variable contains a reference to an object, not
the value as such

* This 1s boring as long as we use only immutable
objects:

— a=1 # create an object with value 1, store reference in a

— a=at+2 # get object refered to by a, get object with
value 2, perform addition to get a new object with
value 3, store reference to that object in variable a

Aliasing

* But what can happen when the objects are
mutable?

— a=[1,2,3] # create a list, store a reference to it in a
— b=a # store the same reference 1n variable b

— b[0]=10 # get the list referenced by b, change element
0...

— a[0] 1s of course also 10 now, as a and b refers to the
same list object!

Aliasing (contd)

e Often, this 1s what we want, but sometimes we
need to copy a mutable object so we do not
change the original when doing operations on the
copy. Use

— mylist[:] to get a copy of the list mylist
— mydict.copy() to get a copy of the dictionary mydict
* These are shallow copies

* New Python programmers tend to be too
concerned about copies and aliasing

Garbage Collection

* We never need to deallocate objects explicitly.

* When the last reference to an object goes away, it
1s deleted and 1ts memory reclaimed:

- s= Waste”*10000 # create a big string
- t=(1,s) # areference to s 1s in the tuple now

— s=1 # we lost one reference to the big string but the one
in the tuple remains

- t=(1,2) # we now lost the last reference to the string
and 1t 1s deleted.

Print Statements

* A simple way to output data to the standard
output 1s provided by the print statement:

— print 10

— print X

— print 'Value of', varname, '1s', value

— print 'Value of %s 1s %s' % (varname, value)
— print 'Newline at end of this'

— print 'No newline at end of this',

Conditional Statements

* Python provides an if-clif-else-statement:

Plain 1 f statenent
1 f tenp < 10:
print “Tenperature too |ow."”

Dual 1f-el se statenent
1f x < O:

print “No roots can be found.”
el se:

print “WIIl solve for roots.”

Conditional Statements (contd)

Multiple choices

1 f tenp < 10:
print “Tenperature too |ow."”
start _heater ()

elif tenmp < 30:
print “Tenperature K.~

elif tenp < 100:
print “Tenperature too high.”
start _alir_conditioner()

el se:
print “We are boiling!”
evacuat e_bui | di ng()

Indentation Sensitive Syntax

* You saw no braces or begin-end pairs delimiting
the statements 1n the compound 1f-elif-else
statement

* Python uses the indentation itself to infer
program structure.

* This is smart, as you should always indent your
code properly!

* The Python mode in Emacs supports this, so it 1s
no big deal if you use the One True Editor.

Nested Compound Statements

* This 1s what a nested compound statement looks
like.

1 f a == Db:
print “A and B are equal .”
1 f b == c:
print “All three are equal!”
el se:

print “But Cis different!”
elif a < b:
print “Ais smaller than B.”
el se:
print “Ails greater than B.”

Comparison Operators

* We have the usual set of operators to compare
things:
— == tests for equality
— = (or <>) tests for inequality
- <, <=, >, >= are also there

— Numbers are compared without caring about type: 0 ==
0.0, 0.0 =0y

— Sequences are compared lexicographically: (1,2) <
(2,1)

Booleans

* The comparison operators return values of type
bool: True or False.

e Earlier versions of Python used 1 for True and 0
for False.

 Compatibility Hack: bool 1s a sublass of int,
where 1 1s printed as True and 0 as False.

— True + 10 gives 11, but please do not ever write code
like that!

Truth Values

* Python considers every value to be true or false,
not only the bools:

— True 1s true and False 1s false, of course
— Numerical values are false 1f zero, true otherwise

— Containers are false if they are zero, true if they
contain items.

— None 1s false

— User-defined classes can contain code to determine 1f
they are true or false

Logical Operators

* Python has “and” and *““or” operators, short-
circuiting like in C:
—1fx>0 and 1/x>10: ...

— We do not risk dividing by zero in the second part
above. If x 1s zero, the second part 1s not evaluated.

* The “not” operator return True when given a
false value and False when given a true value:

— not False gives True
— not True gives False

— not 2 gives False (because 2 1s a true value)

Pre-tested Loop Statements

* A pre-tested loop where we loop as long as the

condition 1s true (no loops at all 1f the condition 1s
false the first time around):

Xx=1
while x <= 10:

print “Line nunber”,x,”of 10.~
X+=1

Break and Continue Statements

* The break statement to exit the innermost loop
immediately.

— We use “while True:” if we need an endless loop (and
then we can exit it using break anyway)

* The continue statement skips the rest of the
innermost loop body.

* We cannot use this to exit or skip more than the
innermost loop.

Iteration Loop Statements

* To loop over sequences, we do not use the while
statement and indexing. Instead, we have the for
loop:

choices = ['Vanilla', 'Chocolate', 'Lenon']
print 'Choose iIce-creani
print '

for ¢ 1 n choi ces:
print '" + cC
print '

[teration

* The for loop works for all containers

— list and tuples are iterated element by element
— strings are 1terated “character” by “character”.

— dictionary iteration 1s over the keys in an undefined
order

* User-defined classes can specify their own
iteration behaviour

Break or Else...

* For loops (and while loops too) can have an else:
part that 1s only taken on “normal exit” but not
when break 1s used to exit the loop:

for e inlong |ist:

| f Is_good(e):
print “A good el enent was found, done.”
br eak
el se:

print “No good el enent was found.”

range and xrange

* The range expression lets us use for loops to loop
over numerical ranges:

— range(d) gives [0,1,2,3,4] (five items)
— range(10,15) gives [10,11,12,13,14]
— for 11n range(1,11): print “Line %d of 10” % 1
* If the range is large, 1t 1s wasteful to construct the

whole list iIn memory. We can use xrange instead
of range then.

— It creates a “fake list” that works just like the one range
builds for the purpose of iteration.

Python Functions

Functions

* Every high-level language have some kind of
subroutine concept.

* Python has functions

* Python does not have procedures

— Functions that end without calling the return statement
implicitly returns None.

— If we do not care about the return value from a
functions, 1t 1s silently discarded

Functions (contd)

* Functions are defined by def:

def origin_distance(x,YVy):
return math. sqrt(x*x + y*y)

def print_var(nane, val ue):
print “Value of”, nane, “is”, value

def func_ wth no _arg():
return 42

Calling Functions

* Functions are called using parentheses:
— dist = origin_distance(x1,y1)
— print_var('x', 4711)
— answer = func_with no arg()

* We cannot omit the parentheses 1n the last
example!

— We would then assigned the function object to answer,
not the result of calling the function

— Functions are first-class objects that can be stored in
variables

Arguments

* Keyword arguments and defaults are possible:

def f(x, y, verbose=0, Indent=4): ...

f(1l,2) # Ok, defaults for verbose and I ndent
f(1,2,1) # Ok, verbose=1l, default for 1 ndent
f(1,2, 1ndent=8) # Ok, default for verbose
f(verbose=2, y=2, x=1) # Ok, default for indent
f(1) # Error

f(verbose=2, 1, 2) # Error

Call by Value

* Python uses call by value
— def f(x): x =3
- y=2; f(y); print y

- We will get “2” printed. The assignment to x in f does
not change the value outside the function body

* But mutable objects can change:
— def f(x): x[0] =3

- y=[L,2]; f(y); print y
- We will get [3,2] printed

[.ocal Variables

* A variable assigned in a function 1s local and
does not affect a variable with the same name
outside the function:

— def f(x): z=3
- z=1; 1(0); print z
- We will get “1” printed.

Accessing Global Variables

* We can access global variables inside a function:
— def f(x): print g
— ¢="Global!”
- 1(0)

— This will print “Global!” just like we expected

Assigning to Global Variables

* To be allowed to assign to a global variable we
have to declare it using a global statement. The
code below will print “17” and then “20”.

X = 17
def f():

gl obal x
print X
x = 20

()

print X

Python Modules

Modules

* Programs can be divided into several files.

e Hach file defines a module.

* Each module has 1ts own global namespace (there
1s no global namespace above all modules).

— Modules thus provide namespace 1solation so two
variables or functions with the same name 1n two
different modules doesn't clash.

e Modules enable code reuse

— Python already provides a lot of built-in modules for us
to use.

Import Statements

* To get access to a module, we use the import
statement:

— 1mport foo
* This imports foo.py

— from the same directory as the running program or

— from a directory on the python module path

* After the import, we can refer to global variables,

functions etc 1n foo using “foo.” before the name,
like this: foo.fak, foo.x

Import into Our Namespace

* Using a special form we can import some names
from a module 1nto our own namespace:

— from foo import fak, x
— from math import sin, cos, tan, sqrt, exp

* We can also import all names from a module into
our own namespace:

— from foo import *

* A module can control what names are exported

when using the “*” import.

Import Runs... Once

* The first time a module 1s imported during the
running of a program, the code 1n the module

runs.

— Even def statements defining functions are executable
code that 1s run to perform the defining

* [f the module i1s imported again the code 1s not
run again
— Only the importer's namespace 1s updated

* Avoid cyclic module dependencies

Packages

* Complicated modules can be subdivided
hierarchically.

* Such modules are called packages and are outside
the scope of this introduction.

Byte-Compiled Code Saved

* We mentioned earlier that Python code 1s byte-
compiled.

* When a module is imported and thus byte-
compiled, the compiled code 1s saved 1n a file
with a .pyc extension:

— foo.py 1s compiled to foo.pyc

— The byte-compiled code 1s loaded instead of the source
code the next time the module 1s imported (if the
source file has not changed)

Python Object Orientation

Object-Orientation

* Python's Object Orientation

— 1s not mandatory to use 1n your programs

— has mheritance (even multiple)

— has not overloading (how would that be possible?)

— makes all methods virtual (redefinable by subclasses)

— doesn't really protect object variables from “cheaters”™

Class Definition

* (Classes are defined and objects created from
them like this:

frommath i nport sqrt
cl ass Coor d:
def init_ (self, x, y):
self.x = x
self.y =y
def origin_distance(self):
return sqrt(self.x**2 + self.y**2)
def is at _origin(self):
return self.origin_distance() ==

cl = Coord(10,20) # create and run __init__
print cl.origin_distance()

Classes (contd)

* When we call a method on an object, the
corresponding method 1n the class 1s called, with
the object as an implicit first argument that we
get into the self argument.

* Also note the difference between self.x (object
attribute) and x (local variable from the argument
list) in the 1mit method.

Inheritance

e [et us define a subclass

— The 1s_at origin method now comes from the
superclass Coord while we implement origin_distance
here:

cl ass Manhat t anCoor d(Coord):
def origin_distance(self):
return abs(self.x) + abs(self.y)

c2 = Manhatt anCoord(5, 5)
If c2.1s_at _origin(): print "lnpossiblel"

Emulating Built-in Objects

* By defining certain special methods 1n our
classes, our objects can behave like numbers,
lists, etc. Examples:

— add (self, other): addition using +
- getitem__ (self, index): indexing
— len (self): len(object)

More to LLearn

* There 1s more to learn about OO i1n Python, of
course, such as:

— Multiple mheritance
— Static and class methods

- “New-style” OO (unification of classes and types)

* This 1s beyond the scope of this introduction.

Python Exceptions

Exceptions

* Python handles errors and other exceptional
occurrences by raising exceptions.

* If not caught, they will cause the program to be
aborted.

>>> a=1/0; print “not reached”
Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or nodul o by zero
>>>

Catching Exceptions

* Exceptions are caught by placing the “dangerous”
code 1n a try:-except: compound statement.

— If dx should be undefined below, we get a NameError
instead, which 1s not caught by the handler.

try:
sl ope = dy/ dx
vertical =0

except ZeroDi visionError:
sl ope = None
vertical =1

Catching Exceptions (contd)

try:
res = dangerous_function()

except (KeyError, NaneError):
print "Trouble type A"
x=al b

except Zer oD vi sionError:

print "Trouble type B"
except :

print "Unknown exception caught"”

* Multiple handlers can be specified

* The division 1n the first handler 1s not protected
by the second handler

* Avoid the last kind of handler if possible

Defining Our Own Exceptions

* We define our own exceptions by subclassing the
built-in Exception class

— We can then raise it using a raise statement.

— The pass statement in the first line 1s a no-op for use
where the syntax requires a statements and we have
nothing to do.

cl ass MyOmnError (Exception): pass
def f(foo0):
| f foo > 100: # Too high
rai se MyOmnError

Guaranteed Finalization

* Another form of try: can be used to guarantee that
a piece of cleanup code 1s run regardless of how a
dangerous piece of code 1s executed.

def f():
rsrc = alloc_external expensive_resource()
try:
This code may rai se an exception
res = call _dangerous_code()
finally:
deal | oc_resource(rsrc)

Python's Included Batteries

File Objects

* You get them with open for normal files:
— f=open('file.txt') # for reading
— f=open('file.txt', 'r) # same
— f=open('file.txt', 'w) # for writing

— f=open('file.txt', 'a) # for appending

— f=open('file.txt', 'rb) # b for binary mode on Windows

* Some modules give you file-like objects to play
with (e.g. urllib)

File Objects (contd)

* Reading
— f.read() # reads the whole file
— f.read(10) # reads 10 bytes

— f.readline() # reads a line including newline

— for line 1n {: ... # modern way of reading line by line
* Writing

— f.write(string)
* Closing

— f.close()

Module sys

* Misc system stuff:
— sys.stdin, sys.stdout, sys.stderr: file objects

— sys.argv: program name + argument list
— sys.environ: Unix environment as a dictionary
— sys.path: Python module search path

— sys.exit(ret): exit the program with a return code

Modules math and cmath

* We have already mentioned these

* [fit1s in the C math library, 1t 1s here too.

Module re

* Regular expressions
— Perl compatible, to a large extent

m=re.match(r' ([*=]+) *= *(.*)"', |Ine)
1T m

param value = m group(1, 2)
el se:

print “Bad configuration |ine found”

Module struct

* Handle binary data structures (in files etc)

Pack into 16-bit unsigned, big endi an
b = struct. pack(">HH', 640, 480)
b 1s '\x02\x80\x01\ xeO’

Unpack them again
(w, h) = struct.unpack(">HH", Db)
wis 640, h is 480

Module random

* Pseudorandom numbers:
— 1 =random.randrange(10,20) # 10 <=1< 20
— r =random.random() # 0.0 <=r < 1.0
— dir = random.choice([“left”, “right”, “up”, “down”])
— random.shuffle(list)

— random.seed(something)

Operating System Access

e Basic OS access

— getcwd, chdir, getpid, getuid, setuid...
— rename, unlink, ...

— system, fork, exec, ...
* Path handling in os.path

— dir, file = os.path.split(path), ...
* More similar modules:

- time, stat, glob, fnctl, pwd, grp, signal, select, mmap,
tty, pty, crypt, resource, nis, syslog, errno, tempfile, ...

Running Commands

* os.system(runthis)

* Moc
* Moc

e Mod

-
i—u.‘

P
i—ua

P
bud

€ popen2

e commands

e subprocess in Python 2.4

Threading

* thread
— Low level thread support

* threading

— Higher level (more like Java)

— Synchronization primitives

* Queue

- T

hread-safe queue

Internet Protocols and Format

socket
urllib, urllib2
httplib, ftplib, gopherlib

cgl, Cookie
poplib, imaplib, smtplib, nntplib, telnetlib, dnslib

email, mimetools, mailbox, mhlib
binhex, uu, binascii, base64, quopri

xdrlib, gzip, zlib

Even More Stuff Included

* Serialising

e XML support
* Testing

* Profiling

* TkInter GUI

* Option parsing

Available on the Net

* Database Glue (MySQL, PostgreSQL, ...)
* Python Imaging Library (PIL)
* Numarray: array handling and computations

Thanks for Not Falling Asleep

Kent Engstrom
kent@unit.liu.se

