Grid in High Energy Physics

Grid in High Energy Physics

Jakob Nielsen
NorduGrid



Outline

 Introducing High Energy Physics

* Experiments

» Why High Energy Physics needs Grid
» Data-Challenges

e Automatic Production Systems

* Job-managers



High Energy Physics

High Energy Physics is the study of the smallest
scales in nature (Paradoxically, maybe!).
Consequence of the Heisenberg uncertainty

relation
Apld -~

Therefore to be able to study smaller and smaller
scales, one needs more and more energy.




The Standard Model

High Energy Physics is
described by the so-called
Standard Model.

It consists basically of a set of
matter particles interacting with

force carriers after some
mathematical equations.

Tested with amazing precision
in many, many experiments!

Nevertheless, there are deep
theoretical reasons why this is

not the complete theory.

N
hgl

Q.E/

stre botiom

|v

HrinG tring N T— N I.I"I‘I:I
muon |

111

Tha Gﬂnaratmns ol Matler

i
L= ]
¥
=

m<

'El
.E
Ly

Leptons Quarks
-/ / / 4

o | E



Experiments

Experiments are performed at large-scale accelerators
in several places in the world.

Usually huge experiments with up to several
thousand people involved.

Examples: CERN, DESY, SLAC, RHIC ...

Particles are accelerated to huge energies and
collided.

The collision is then studied by large detectors hoping
to detect new physics/new particles.

More energy -> smaller scales -> higher probability to
discover something new.



CERN

CERN is the European High
Energy Physics Laboratory
situated in Geneva,
Schwitzerland.

Huge accelerator — 28 km in
circumference!

At the moment, it is being
upgraded to higher energies.

] _,r'."'i Ay e M-
M oh 0 o Ll
e - TUTZIT
D = . =
i"ﬂj' ‘8 s p =

b

LHC = Large Hadron Collider §#
will start in 2007.

With 4 different experiments
studying the collisions.

<k
_:r’
J.-'.



I 4 Experiments

I 4 different experiments placed at 4 different

places in the ring.

- LHCDb - detector specially targeted at stduying
b-physics.

- Alice — detector to study collisions of nuclei and
the generation of quark-gluon plasma.

- ATLAS - general purpose detector looking for
the elusive Higgs particle and supersymmetric
particles.

- CMS - another general purpose detector with
the same goals as ATLAS.



I ATLAS

these experiments.

I * ATLAS (A Toriodal Lhc ApparatuS) is one of
* Huge detector — 20x40 meters, 8000 tons!




I ATLAS

- Detection of the elusive Higgs particle.
- Observation of the proposed supersymmetric
particles.

* Collisions will happen once every 25 ns.
 Signals from collisions from the whole detector
needs to be collected, processed and stored.

* Huge synchronization problem.
- How do ensure that signals from different sub-
detectors are from the same event?

* Complicated since speed of light is very small!

I * Major goals include:



I ATLAS Event-processing

* During runs,
I - Efficient online data-algorithms will run on partially
collected events.
- Throw away most events as uninteresting.
- Collect the very few interesting looking events for
further processing.

* Event-rate is reduced from 40 MHz to only
about 100 Hz.

 But 2 MB pr. event gives
- 200 MB data pr. second
- Or 17 TB pr. day.
- Or in total 6 PB pr. year.



I ATLAS Data-management

TB data pr. year.
e This data should be

- stored safely at storage servers at CERN and
around the world.

- registered so that it can be found at all times.

— processed to produce simple analyzable data.

- analyzed ...

I * Adding simulated data, we end at about 10

 Huge computational and logistic problem!
* For this, ATLAS needs Grid!



I LCG

deliver a working Grid solution to the LHC-
experiments.

* Goalis to solve the enormous logistic and
computational problems faced by physicists.

I * The LCG (LHC Computing Grid) project is to

e Current middleware, LCG-2, is based on the
middleware developed by the EDG-project.

* To be replaced by glLite during 2005.

e glite is a lightweight middleware based on a
re-engineered version of Alien.



I Other players

computing includes:

- US Grid -- grid solution and infrastructure
developed in the US.

- NorduGrid - grid-middleware and infrastructure
developed and deployed in the Nordic countries.

I e Other Grid-players participating in LHC grid-

* Both contribute substantially to the LHC
Data-challenges.

e Could be considered equal players with LCG.

* But politics!




I Summary

* A new round of High Energy Physics
I experiments will start at the LHC in 2007.

* The data-taking will collect an
unprecedented amount of data.

* The physicists at the LHC needs Grid for
their analysis!

e (Grid-solutions like LCG, US-Grid and
NorduGrid are being developed, deployed
and tested.

* Only the future will show ....



I Data-Challenges

planned a series of Data-Challenges.

* The goal is to test the detector software, the
Grid-infrastructure and the interplay.

* Each Data-Challenge bigger and more
complex than the next.

I * To prepare for the LHC, all experiments have

* The Data-Challenges run as a series of
production runs generating simulated data.
* Interesting for the physicists to look at.



I LHC Data-Challenges

set of so-called Data-Challenges.

e The goals are to
- Prepare for the data-taking and analysis at the
scale of the LHC.
- Introduce the use of Grid-middleware as fast as
possible.
- Validate the experiment's software.

I * The 4 experiments at the LHC has initiated a

* In the following, we will describe one of
these, the ATLAS Data-Challenge 2.



I ATLAS Data-Challenge 2

ATLAS-physics-simulation challenge.
It has run in several stages since June 2004.
e Stage 1: Detector-Simulation (Jun-Oct)
e Stage 2: Digitization (Oct-Dec)
e Stage 3: Reconstruction -- just starting ...
* In stage 1, 1M events had to be simulated.
With about 10 minutes CPU time pr. event,
roughly 10M minutes CPU time in total.

I * ATLAS Data-Challenge 2 is a large-scale



I Data-Challenge 2

* 3 Grids has participated in the production
- LCG 4000 CPU's available
- US-Grid 800 CPU's available
- NorduGrid 700 CPU's available

* The simulations are divided into different
datasets.

* Assigned to the different Grids according to
their capacity.

* Reassignment if one Grid turned out to have
too many jobs.

e Continuous production for several months!



I Data-Challenge jobs

- The job is submitted to some cluster with the
ATLAS software preinstalled.

- Inputtiles are either located on the cluster

already or downloaded before the job is run.

- The job is run -- producing some output.

- The output files are stored on some random
Storage Element somewhere.

- The physical locations of the output files are
registered in some database.

e Simple -- but there are than more 200.000 of
these!

I * A very schematic DC jobflow looks like this:




I 200000+ jobs

I  Running 200.000 jobs in shortest possible
time is quite a challenge!

e It takes time ...
- Submitting jobs.
- Tracking the running jobs and their output.
- Cleaning after failed jobs.
- Rerunning failed jobs.
- Making sure all jobs have been run.
- Basically babysitting the jobs.
— All such babysitting takes time!
 And much, much more than expected ...



Production System

Therefore a combined inter-grid production system
has been written for Data-Challenge-2.

The production system has interfaces to the 3 grid-
flavors through grid-specific “executors”.

All jobs defined in a database in a grid-neutral xml-
language.

Jobs are picked up by a grid-independent supervisor
and presented to the “executors”.

The executor translate the grid-neutral xml-language
to the job-description language used in the particular
grid-middleware (xRSL for NorduGrid).



Production System

" Production
D t
onD(§/11181] Ofe Database
v /:/
Windmill
Supervisor
/ v \
Dulcinea Lexor Capone
\/ \ \
NorduGrid LCG Grid 3
resources resources resources




I Executor/Supervisor

I * Executor tasks consists of
- Submitting jobs.
- Answer status queries for submitted jobs.
- Finalize finished jobs.

e Supervisor tasks consists of
- Pulling available jobs from the database and
presenting them to an executor.
— Ask status queries for submitted jobs.
- Make sure finished jobs gets registered as finished.
- Make sure failed jobs gets resubmitted.



I Implementation

I e Executor/Supervisor exchange xml-messages

using the Jabber-protocol.

* A Jabber-server is setup and the executors and
supervisors connect to it.

e Executor/Supervisor prototypes were written
in python for easy development.

e Executor-implementations written in python
or as a C++-python module (NorduGrid).



I Messages

* The supervisor can send the executor 4

I different types of messages:
- How many jobs with given requirements do you
want?
- Submit the following jobs.
- Did the jobs get submitted?
- What is the status of all submitted jobs?

 In each case, the executor has to

- Process the xml-message
- Get the status of the Grid and jobs on the grid.

— Construct an xml-answer
— Send it back

* Format of messages given from a xml-schema.



Dulcinea

* Dulcinea is the NorduGrid executor.

e It is written as a C++-python module on top
of the NorduGrid UI API.

* Each message translates into a specitic UI-

call to the NorduGrid information system:
- Submit jobs --> ngsub
- Get status of jobs -->ngstat etc.
e Can be viewed as a fairly simple wrapper
around the NorduGrid UL.
* Most work is done by parsing/constructing

xml-messages.



I Production System

I e It actually works!
e Can in principle run unattended for several

days with several thousand jobs.

e Cuts the needed manpower for production
drastically.

» 2 persons able to do NorduGrid production
(70.000 jobs).

 However, the executors/supervisors needs
baby-sitting themselves!



I Limitations

* Jabber-framework not very suitable for this
I kind of job!
e Current implementation does not scale to more

than a few thousand jobs pr. executor.
- Huge xml-messages exchanged.
* Huge startup times (read in submitted jobs
from database).
* No proxy-forwarding
- Can run jobs using other people's credentials.
— Screws up accounting.
* Memory leaks necessitates frequent restarts.



I Extensions

I * Several ideas:

* Replace Jabber-framework with httpg-
daemons exchanging xml-messages over
SOAP.

* Would immediately allow proxy-forwarding.

* More advanced job-manager with better
schema.

 Flat-file support with job-definitions.



I Summary

I e LHC is running a series of Data-Challenges.
* ATLAS Data-Challenge 2 running this year.
* Used an automatic production system on 3
grid-flavors for the production.
e Production system built with
- grid-specitic executors
- grid-independent supervisors
- grid-independent job-description language
* It works — and saves (lots of) man-power!
e But also has limitations ...



I Job-managers

I * A job-manager is an automatic process that

when started
- Reads user job-descriptions.
- Submit those jobs to the Grid.
- Track the jobs as they are run.
— Mark finished jobs.
- Resubmit failed jobs.
- Register output-files.

* All without intervention from the user.



I Why a job-manager?

grossly underestimated.
- A few hundred jobs sufficient for having advantage
from a job-manager.

» Takes care of the boring aspects of the

production.
- Lets the scientist concentrate on the data-analysis
instead.
* Quicker! Doesn't sleep or take days off ....

* Everybody needs a job-manager!

I e Baby-sitting jobs is much work — usually



Components

* Ajob-manager should contain a plugin-

structure with replaceable components:
- A Job-definition language

— Job-submission component

- Job-status component

- Job-failure component

- Cluster-efficiency component

- User-defined components ..

* Pluggable components to avoid monolithic
structure.
* Each component is run periodically.




I Job-definition-language

- Should be able to describe a wide array of different
tasks to be performed.
- Independent of the actual simulations performed.

e Standard use-case:

* Ajobisrepeated N times
- with a varying set of parameters
- varying set of input-files and output-files
* The job-definition-language should at least
support this.
* And it should be simple to describe for a user.

I * A job-definition-language



I Submitter-component

* The submitter-component should contain:

* A task-reader
- Reading tasks from a flat file / database
- Flat file usually for smaller amount of jobs
- Database for huge amount of jobs
* A job-language parser
- A parser that translates abstract task-descriptions
to the job-description-language of the Grid.
- Could be fairly general and not experiment-
specific
* A job-submitter
- For submitting jobs.
— Should spread out job-submission.




I Status/Failure-component

- periodically query the Grid for information
about submitted jobs.

- act upon the information gathered.

- register finished and failed jobs.

I * The status component should

* The job-failure component should

- Investigate job-failures from status-messages
 What kind of failure was it?
e Do certain jobs crash very quickly?
e Has the same job crashed several times?

- Deduce information from logtile (hard!)
- Mark failed jobs to be resubmitable.



I User-defined components

own components that can be plugged in.
- Maybe a more advanced job-resubmission
component could be useful for some users.
- Or a save-output component that copies the
output of the run to a local machine.
- Or even a better broker in the job-submission
component

* Such components should be easily plugged
in. No need for recompilation...

I It should be possible for users to write their



Cluster Efficiency component

* A cluster efficiency component
- Should measure the efficiency of clusters from
the number of finished jobs
— Could rule out job-submissiont to clusters at
runtime
- Especially black-hole-clusters should be
detectable (those with many failed jobs)

* The results should be reported back to the
job-submission component.



I Comparison with DC2
I framework

I e Missing flat file readin
- More complicated to use for a small user

 Somewhat fragile framework with two parts
- Jabber framework does not scale

* No plugin-structure
- User cannot easily change the behaviour of the

executor

* Needs more general language

- Job-definition language is very HEP-specitic.



I ARCLib

ARC Userinterface written in C++.
* Equipped with a well-defined API.
* Python-wrappers.
* Some functionality still missing.
* More testing needed.

* Examples:

* Clusters = GetResources(“atlasgiis.nbi.dk”)
e ClusterInfo = GetJobInfo(Clusters)

I  ARCLIib is a reimplementation of (parts of) the



I Job-manager in ARCLib

I * A job-manager already exists inside ARC that

can handle resubmission of failed jobs.
- Works but still needs testing in a production
environment.

* Also a new job-manager with the above
requirements is being developed at the
moment.

* Uses ARCLib's python wrappers.

* Has the potential to completely replace the
executor/supervisor framework.



Job-managers in HEP

e As we approach 2007, reliable job-managers
will be an essential tool for physicists.

* The quantity of data will be so large that it will
be impossible to work without it.

 Maybe the single-most important thing!

e Such a job-manager as above would be a
serious help to many scientists running on

Grid.



