
{kajny, g-hakma}@ida.liu.se{kajny, g-hakma}@ida.liu.se

GridModelica: Modeling and
Simulating on the Grid
Håkan Mattsson, Christoph W. Kessler,

Kaj Nyström, Peter Fritzson

Programming Environments Laboratory PELAB
Department of Computer and Information Science

Linköping University Sweden

{g-hakma,chrke,kajny,petfr}@ida.liu.se

{kajny, g-hakma}@ida.liu.se

Modeling on Linux Clusters

• Widely used for large models

• Requires expertise in parallel programming

• Excellent for run-many-times simulations, not
 so good for run-once simulations

{kajny, g-hakma}@ida.liu.se

GridModelica

• Structured modeling on clusters

• Does not require parallel programming expertise

• Domain agnostic (multidomain works too!)

• Graphical programming, close to physical prototyping

• The magic is done behind the scenes

{kajny, g-hakma}@ida.liu.se

High Level Modeling: Modelica

• Graphical
or textual

• Acausal

• General

• Fast

• Easy to
use

• Object oriented

{kajny, g-hakma}@ida.liu.se

More on Modelica
• Graphical representation corresponds 1:1 to textual representation

model dcmotor
 Import Modelica.Electrical.Analog.Basic;
 Resistor r1(R=10);
 Inductor i1;
 EMF emf1;
 Modelica.Mechanics.Rotational.Inertia load;
 Ground g;
 Modelica.Electrical.Analog.Sources.ConstantVoltage v;
equation
 connect(v.p, r1.p);
 connect(v.n, g.p);
 connect(r1.n, i1.p);
 connect(i1.n, emf1.p);
 connect(emf1.n, g.p);
 connect(emf1.flange_b, load.flange_a);
end dcmotor;

{kajny, g-hakma}@ida.liu.se

Problems

1. Partition the model

3. Structured communication
(Håkan Mattsson)

{kajny, g-hakma}@ida.liu.se

Partitioning a model

Some observations

• It is all about solving large systems of equations

• Parallel solvers exist but can not always be applied
 (stability issues) and do not always improve speed.

{kajny, g-hakma}@ida.liu.se

Transmission Line Modeling [1]

All propagation in a
model (waves, force,
current etc)
is done with a certain
delay.

Use this delay to send
data less frequently.

1. [Johns 1972]

{kajny, g-hakma}@ida.liu.se

Transmission Line Modeling
• Reuse values

• Different solvers (and settings) for different parts
 of a system

• Communication in bulk

• The error introduced is well defined and
 generally very small.

{kajny, g-hakma}@ida.liu.se

Transmission Line Modeling

{kajny, g-hakma}@ida.liu.se

Transmission Line Modeling

{kajny, g-hakma}@ida.liu.se

GridNestStep

• For grid applications with a non-trivial structure of parallelism,
generation of efficient, scalable code is an unsolved problem

• Goal – to provide an ”easy-to-use” programming environment
by introducing a programming language, GridNestStep, that
supports
– development of applications exploiting less trivial kinds of parallelism

– a virtual shared memory view of a grid system

{kajny, g-hakma}@ida.liu.se

GridNestStep

• GridNestStep
– follows the Bulk Synchronous

Parallel (BSP) model of
computation

– will be based on NestStep

• BSP
– cost model for parallel programs

– Single Program, Multiple Data execution style, (SPMD)

– organizes program in supersteps consisting of
1 – computation
2 – communication

Superstep

P0 P3 P5 P6 P7 P8 P9P1 P2 P4

using local data only

Global barrier

Next barrier

Local computation

Communication phase
(message passing)

Time

{kajny, g-hakma}@ida.liu.se

NestStep

• NestStep [Kessler, 2000]
– parallel programming language for the BSP model

– language extensions for Java / C / C++

• Extends BSP by
– static and dynamic nesting of supersteps

– synchronization of processor subsets (groups)

– software emulation of virtual shared memory

• step { neststep(2, @=expr) {
 statements statements
} } // @ = group id

{kajny, g-hakma}@ida.liu.se

NestStep

• Variables, arrays and objects are
– private to a processor or

– shared between a group of processors

• Modes of sharing:
– replicated, local copy on each processor in a group

– distributed, an array partitioned between processors in a group

• NestStep superstep invariants:
– superstep synchronicity, all processors of the same group work

on same superstep

– superstep consistency: entry to a (nest)step statement ⇒
equal values for local copies of shared variables

{kajny, g-hakma}@ida.liu.se

NestStep

• Communication in processor
groups organized as trees

• Superstep consistency
maintained by a combine
phase at the end of each
superstep
– upwards combine

– downwards commit

0

1 4 7

P

P P P

P2 5P 6PP3

{kajny, g-hakma}@ida.liu.se

GridNestStep

Cluster 1 Cluster 2 Cluster 3

Scheduler

Current superstepdivided intoworkpackages

Grid platform

C program usingNestStep runtimelibrary

{kajny, g-hakma}@ida.liu.se

GridNestStep

• Some (known) problems to be solved:
– superstep analysis and partitioning into workpackages:

- how to monitor load and
- perform load balancing accordingly

– latency

– failing grid nodes

– code distribution

{kajny, g-hakma}@ida.liu.se

Current status

• Parameter sweep tool for Modelica works fine
(Modelica runs on the grid!)

• Partial test implementation for TLM in Modelica exists

• Only very simple examples works for now

• Partitioning only by hand and only in textual model
(no drag’n drop tool support yet)

• NestStep runs on a single cluster

{kajny, g-hakma}@ida.liu.se

• Generalize the partitioning method to all physical domains

• Automatic partitioning at domain boundaries and natural
subsystem borders

• Automatic solver and step size selection

• Better scheduling

• Co-simulation integration (with SKF)

• Continue with multi-cluster support and transition to SweGrid

• NestStep front end

Future Work

{kajny, g-hakma}@ida.liu.se

Questions?

