

Malek O. Khan Dept. of Physical Chemistry Uppsala University

Parallel Flat Histogram Simulations

Malek O. Khan

Dept. of Physical Chemistry, Uppsala University

Original motivation: DNA condensation

Parallel Flat Histogram Simulations

Malek O. Khan

Dept. of Physical Chemistry, Uppsala University

Original motivation: DNA condensation

Fluorescence microscopy of DNA with multivalent ions

K. Yoshikawa et al, Phys. Rev. Letts., 76, 3029, 1996

"unambiguous interpretation of experimental observations" -Kenneth Ruud

DNA either elongated or compact not in between

Polyelectrolyte model

Hamiltonian

 $U_0 = U_{bond} + U_{es} + U_{hc} + U_{angle}$

- Fixed bond length
- Electrostatics

$$U_{es} = \sum_{i < j}^{N+N_c} \frac{q_i q_j e^2}{4\pi\varepsilon_r \varepsilon_0 \left| \vec{r_i} - \vec{r_j} \right|}$$

- Hard sphere particles
- Intrinsic stiffness

$$U_{angle} = C \sum_{i=2}^{N-1} \cos \alpha_i$$

- Outer spherical cell
- Moves clothed pivot & translation

Condensation of polyelectrolytes - MC

 $q_i q_j e^{-1}$

 $4\pi\varepsilon_{r}\varepsilon_{0}|\vec{r}_{i}$

 U_{es}

- Polyelectrolyte conformation
 - Stretched under normal conditions
 - Large electrostatic interactions lead to condensation
- Flexible polyelectrolytes

Experiments by R. Watson, J. Cooper-White & V. Tirtaatmadja, PFPC

- Effect of intrinsic chains stiffness???
 - **Problem 1**: Mixture of length scales bonds and Coulomb lead to slow convergence --> parallel calculations
 - **Problem 2**: Long range Coulomb interaction every particle interacts with every other particle

Convergence for stiff PE (N=128)

Months of computer time needed for stiff polyelectrolytes

Problem 1: Mixture of length scales - bonds and Coulomb lead to slow convergence --> parallel calculations

Problem 2: Long range Coulomb interaction - every particle interacts with every other particle in the Monte Carlo Simulation

Solutions

- Cluster moves clothed pivot
- Parallel expended ensembles
- Parallel flat histogram techniques

Parallel flat histogram simulations

- Our implementation is a parallel implementation of a serial algorithm introduced by Engkvist & Karlström and Wang & Landau
- Instead of importance sampling create a flat distribution of the quantity of interest
- Correctly done this gives the potential of mean force (POMF) as a function of the quantity of interest

Engkvist & Karlström, Chem. Phys. 213 (1996), Wang & Landau, PRL 86 (2001)

Potential of mean force, w $p(\xi_0) = \frac{\int \exp[-\beta U(\vec{r})] \delta[\xi - \xi_0] d\vec{r}}{\int \exp[-\beta U(\vec{r})] d\vec{r}} \qquad w(\xi) = -k_B T \ln(p(\xi))$

Add
$$U^*$$
 $p^*(\xi_0) = \frac{\int \exp\left[-\beta U(\vec{r}) + U^*(\xi_0)\right] \delta\left[\xi - \xi_0\right] d\vec{r}}{\int \exp\left[-\beta U(\vec{r}) + U^*(\xi_0)\right] d\vec{r}}$

 $p(\xi) = p^*(\xi) \exp[\beta U^*(\xi)]C_1$

If $p^*(\xi) = \text{constant}$ $p(\xi) = \exp[\beta U^*(\xi)]C_2$ $U^*(\xi) = -w(\xi) + C_3$

New formulation of the problem: construct a "flat" p

Implementation

- Discretize $U^{*}(\xi)$ and set to zero (here ξ is R_{ee})
- For every ξ visited, update $U^*(\xi)$ with δ_{pen}
- Repeat until $p^*(\xi)$ is "flat"
- Decrease $\delta_{pen} \longrightarrow \delta_{pen}/2$
- Repeat until δ_{pen} is small
- Parameters:
 - □ Number of bins (~ 10^2 - 10^3)
 - □ Initial choice of δ_{pen} (0.001-1k_BT)
 - □ What is "flat" (max[$lp^*(\xi) \langle p^*(\xi) \rangle$] < (0.1-0.35)
 - □ Finish when $\delta_{pen} < (10^{-8} 10^{-5})$

Parallel implementation

- Run copies on N_{cpu} processors with different random number seeds
- Calculate individual U^{*} and p^{*} on every CPU
- During simulation sum U^{*} and p^{*} from all processors
- Distribute $\langle U^* \rangle_{cpu}$ to all processors
- Check averaged <p*>_{cpu}
- Each processor does not have a constant p^{*} but the sum over N_{cpu}

Distribution functions

Flat histogram method at least of same quality

Evolution of the potential of mean force

Polyelectrolyte, N=64, tetravalent counterions POMF at every update of δ_{pen} shown below The right graph only shows the last 8

The POMF converges to a solution. There is no way of knowing if it is the correct solution. Experimental approach has to be taken.

Time between updates

Experimental approach: Do it 11 times and collect statistics

Time between updates is independent of N_{cpu}

Errors in the POMFs

Experimental approach: Do it 11 times and collect statistics

Error is independent of N_{cpu}

Parallel efficiency

Polyelectrolyte, N=64, tetravalent counterions

Extra time for communication is small up to N_{cpu} =32

Parallel efficiency (effect of system size)

Larger, more complex, systems scale better

Individual processors

Polyelectrolyte, N=64, tetravalent counterions

All CPUs do not have a flat histogram - the sum has

Case study: Polyelectrolytes with intrinsic stiffness

Polyelectrolyte, N=128, monovalent counterions + added tetravalent salt Scales to 64 processors on Power 5 (VPAC) and Itanium2 (APAC)

Distribution functions - Flexible PE

Polyelectrolyte, N=128, monovalent counterions + added tetravalent salt

Distribution functions - stiff PE

Polyelectrolyte, N=128, monovalent counterions + added tetravalent salt

Summary - Stiff polyelectrolytes

Monte Carlo

Fluorescence microscopy of DNA

K. Yoshikawa et al, Phys. Rev. Letts., 76, 3029, 1996

- Possible to simulate all or nothing phase transition of stiff polyelectrolytes, see double maxima for n_c=38 on previous page
- Simulation time for each point is 1 week on 24 processors on brecca (VPAC 2.8GHz Xeon with Myrinet interconnect) (5.6 CPU months)

Summary - Parallel flat histograms

- Gives the free energy directly
- Allows exploration of areas of phase space which are difficult to reach with conventional MC complements importance sampling
- Parallelisation is easily implemented and shown to scale linearly to a large amount of CPUs on clusters
 - Time between updates is independent of N_{CPU}
 - Error is independent of N_{CPU}
 - Distribution is flat over all CPUs not every individual one
 - CPU time does not increase with N_{CPU} (for large systems)

Acknowledgments

People

Derek Chan – Big boss Simon Petris – PhD student: double layers Gareth Kennedy – MSc student: computational methods Malek Ghantous – Honours student: polymer conformation

Grants & Organisations

Wenner-Gren Foundation – post doc grant ARC PFPC at The University of Melbourne VPAC and APAC

Australia

