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MPCA
MPCA is a discrete version of PCA (principle components, top K eigenvectors of a 
matrix) for sparse integer data. 

To make it simple
● goes through documents to build a sparse document-word matrix
● creates different categories based on word occurrence
● assigns membership level for documents based on relevance

Uses are
● building categories of documents, e.g., Open Directory Project or DMOZ 

has hierarchical categories
● partitioning a subset of the web into strongly connected regions and 

identifying hubs (good outgoing links) and authorities (commonly linked 
to)

● also used in the genome project for genotype discovery, although not this 
particular software
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How it works
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The parallel version

Relevant facts
● The task is divided by splitting up the documents
● The component - word matrix is large – a lot of data to transfer
● Total amount of data to transfer between loops is linearilly dependent on 

node amount 
● The component - word matrix is always in memory – the available memory 

limits the component amount for a problem

What we have done
● We are using MPI for parallellization 
● We have a working tested parallel version – with room for improvement



Complexity
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Some performance data

GCC + LAM GCC + MPICH PGI + LAM PGI +MPICH
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Small testrun on a 4 node cluster
● 2 * Athlon64 cpus / node
● 2 GB memory / node
● gigabit ethernet



Scalability
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Finnish web
3 M documents
10 components

Reuters news archive
800 k documents
100 components
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Problems

Data transfer the limiting factor - solutions
● Use a faster network
● Compress data before transfer
● Change the communication model - possibly

need to break the algorithm
● Run on reduced problem to convergence – then 

run on full problem

Memory requirements
● Larger jobs mean more words -> less components

with the same amount of memory
● Run large jobs on nodes with much memory?
● Compress data in memory?



The present and the future
The Present

● Working parallellization with MPI
● Succesful runs on clusters
● Has been used on the whole Finnish web (3 M docs), 

Wikipedia (600k docs) and DMOZ (6 M docs)
● Problems with memory requirements and communication

The Future
● Run on much larger document sets
● Improve scalability
● Runs on a grid


