
Parallellization of a semantic 
discovery tool for a search engine

Kalle Happonen
Wray Buntine



MPCA
MPCA is a discrete version of PCA (principle components, top K eigenvectors of a 
matrix) for sparse integer data. 

To make it simple
● goes through documents to build a sparse document-word matrix
● creates different categories based on word occurrence
● assigns membership level for documents based on relevance

Uses are
● building categories of documents, e.g., Open Directory Project or DMOZ 

has hierarchical categories
● partitioning a subset of the web into strongly connected regions and 

identifying hubs (good outgoing links) and authorities (commonly linked 
to)

● also used in the genome project for genotype discovery, although not this 
particular software



The matrices

do
c

word

co
m

p

word

node 1

node 2
do

c

comp

input output

node 1

node 2

node 1

node 2



How it works

Slave 1 (node 2)

d
o
c

word

d
o
c

comp
word

co
m

p

Master (node 1)

d
o
c

word

d
o
c

comp

word

co
m

p

word

co
m

p



The parallel version

Relevant facts
● The task is divided by splitting up the documents
● The component - word matrix is large – a lot of data to transfer
● Total amount of data to transfer between loops is linearilly dependent on 

node amount 
● The component - word matrix is always in memory – the available memory 

limits the component amount for a problem

What we have done
● We are using MPI for parallellization 
● We have a working tested parallel version – with room for improvement



Complexity

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 20 30 40 50

Components

S
ec

o
n

d
s



Some performance data

GCC + LAM GCC + MPICH PGI + LAM PGI +MPICH

0

25

50

75

100

125

150

175

200

225

250

Compiler / MPI performance

S
e
co

n
d

s

Small testrun on a 4 node cluster
● 2 * Athlon64 cpus / node
● 2 GB memory / node
● gigabit ethernet



Scalability

0

200

400

600

800

1000

1200

1 2 3 4

Nodes

S
ec

o
n

d
s

Finnish web
3 M documents
10 components

Reuters news archive
800 k documents
100 components

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2 4 6 8 10 12 14 16

Nodes

S
ec

o
n

d
s



Problems

Data transfer the limiting factor - solutions
● Use a faster network
● Compress data before transfer
● Change the communication model - possibly

need to break the algorithm
● Run on reduced problem to convergence – then 

run on full problem

Memory requirements
● Larger jobs mean more words -> less components

with the same amount of memory
● Run large jobs on nodes with much memory?
● Compress data in memory?



The present and the future
The Present

● Working parallellization with MPI
● Succesful runs on clusters
● Has been used on the whole Finnish web (3 M docs), 

Wikipedia (600k docs) and DMOZ (6 M docs)
● Problems with memory requirements and communication

The Future
● Run on much larger document sets
● Improve scalability
● Runs on a grid


