
1
&

Contact:Alan Edelman

Interactive Supercomputing • 135 Beaver Street, FL 2 • Waltham, MA 02452

781.398-0010 • edelman@interactivesupercomputing.com • www.interactivesupercomputing.com

Delivering Interactive
Parallel Computing Power
to the Desktop

An Interactive Approach to
Parallel Computing
Algorithms with Star-P

Alan Edelman MIT (& ISC)

2
&

Parallel Computing Arts

Message Passing:

The King’s Messenger

Batch Processing:

Coding, Modeling, &
Debugging

Punch Cards (textile loom 1840)

Noble perfected arts: what’s next for
productivity?

3
&

Productivity

 Make this machine
go faster?

puzzle pieces
working together

Humans interacting
online

Most important catalysts for productivity are

Interactivity & ease of use

4
&

Star-P = A Software Platform For
Interactive Supercomputing

Visualization &
other desktop
applications

I D L

Maple

Mathematica

PYTHON

Star-P
Client

HPC
Servers

Proprietary
Parallel

Libraries

Automated
Hardware

Manageme
nt

Bridge

MATLAB

Star-P
Server

Large
Distribut
ed Data

Slide contains trademarks owned by private corporations. Use of logos or registered trademarks does not imply endoresement

“The Dream”

5
&

INTERACTIVE Fundamentally Alters
the Flawed Process

Desktop
Prototyping

 Transfer to HPC
 (re-code in C/Ftn, MPI)

 Test and Scale Model
With Real Data

Limited iterations

Batch

Workflow
 Production

Model Development Phase – “Time to Production”

Re-coding takes time, and invariably takes away from model refinement

Interactive
Workflow

“Time to Production”
Interactive

Time Savings

 Production

“No change in religion”

“ISC is the closest
thing I’ve seen to a
killer app." John Mucci

CEO, SiCortex

6
&

High Productivity Design Principles

Rich set of High Performance primitives & tools.

a. Interoperate

b. Interactive

OK to exploit special-purpose hardware as appropriate
(FGPGAs, GPUs)

Do it yourself (in MPI, OpenMP, etc.,)  do it for
everyone!

7
&

StarP with MATLAB®

The Buffon Needle Problem

P(l;a,b)=(2l(a+b)-l2) / (πab)
function z=buffon(a,b,l, trials)

%% Embarassingly Parallel Part
r=rand(trials,3);
x =a*r(:,1)+l*cos(2*pi*r(:,3)); % x coord
y =b*r(:,2)+l*sin(2*pi*r(:,3)); % y coord

 inside = (x >= 0) & (y>=0) & (x <= a) & (y <= b);

%% Collective Operation (the sum)
bpi=(2*l*(a+b) - l^2)/ (a*b*(1-sum(inside)/trials));

%% Front end
z=[buffonpi;pi;abs(pi-buffonpi)/pi];

buffon(1,1,.5,10000*p)

8
&

Star-P Language
xxx == explicit parallel extension

yyy == parallelism propagated
 implicitly

a = rand(n,n*p);

ppload imagedata a

[nrow ncol] = size(a);

b = ones(nrow,ncol);

c = fft2(a);

d = ifft2(c);

diff = max(max(abs(a-d)));

if (diff > 10*eps)

 sprintf(‘Error, diff=%f’, diff);

end

e = ppeval(‘sum’,a);

e = ppeval(‘quad’,’fun’,a);

MATLAB™, plus

global view (v. node-oriented)

Strong bias towards propagation of
distributed attribute

*p denotes dimension of distributed
array

Overloading of operators

ppeval for task parallelism

Empirical data: typically have to
change 10-20 SLOC for MATLAB
codes to work in Star-P

9
&

It’s still MATLAB!

1.File Editor

2.Profiler

3.Debugger

4.Array Editor

5.Desktop

6.Viz

7.Small Calculations

8. …

Slide contains trademarks owned by private corporations. Use of logos or registered trademarks does not imply endoresement

10
&

Opening Star-P

1.Windows: Hit the Little Button

2.Linux:
 starp <options>
 -a server_host
 -t data_dir_on_server
 -s path_to_star-p_on_server
 -p number_of_processors

•Console mode vs desktop mode

11
&

Closing Star-P

>> quit

It’s still MATLAB!

12
&

My first Star-P session

 < M A T L A B >

 Copyright 1984-2005 The MathWorks, Inc.

 Version 7.0.4.352 (R14) Service Pack 2

 January 29, 2005

Connecting to Star-P Server with 4 processes

Star-P Client.

(C) MIT 2002-04.

(C) Interactive Supercomputing, LLC 2004.

All Rights Reserved.

>> 1+1

ans =

 2

>> A=randn(100*p)

 A =

 ddense object: 100p-by-100p

13
&

My first Star-P session

 < M A T L A B >

 Copyright 1984-2005 The MathWorks, Inc.

 Version 7.0.4.352 (R14) Service Pack 2

 January 29, 2005

Connecting to Star-P Server with 4 processes

Star-P Client.

(C) MIT 2002-04.

(C) Interactive Supercomputing, LLC 2004.

All Rights Reserved.

>> 1+1

ans =

 2

>> A=randn(100*p)

 A =

 ddense object: 100p-by-100p

How many p’s?

14
&

My first Star-P session

 < M A T L A B >

 Copyright 1984-2005 The MathWorks, Inc.

 Version 7.0.4.352 (R14) Service Pack 2

 January 29, 2005

Connecting to Star-P Server with 4 processes

Star-P Client.

(C) MIT 2002-04.

(C) Interactive Supercomputing, LLC 2004.

All Rights Reserved.

>> 1+1

ans =

 2

>> A=randn(100*p)

 A =

 ddense object: 100p-by-100p

How many p’s?

Still MATLAB

15
&

My first Star-P session

 < M A T L A B >

 Copyright 1984-2005 The MathWorks, Inc.

 Version 7.0.4.352 (R14) Service Pack 2

 January 29, 2005

Connecting to Star-P Server with 4 processes

Star-P Client.

(C) MIT 2002-04.

(C) Interactive Supercomputing, LLC 2004.

All Rights Reserved.

>> 1+1

ans =

 2

>> A=randn(100*p)

 A =

 ddense object: 100p-by-100p

How many p’s?

Still MATLAB

Just Checking

16
&

My first Star-P session

 < M A T L A B >

 Copyright 1984-2005 The MathWorks, Inc.

 Version 7.0.4.352 (R14) Service Pack 2

 January 29, 2005

Connecting to Star-P Server with 4 processes

Star-P Client.

(C) MIT 2002-04.

(C) Interactive Supercomputing, LLC 2004.

All Rights Reserved.

>> 1+1

ans =

 2

>> A=randn(100*p)

 A =

 ddense object: 100p-by-100p

How many p’s?

Still MATLAB

Just Checking

17
&

My first Star-P session

 < M A T L A B >

 Copyright 1984-2005 The MathWorks, Inc.

 Version 7.0.4.352 (R14) Service Pack 2

 January 29, 2005

Connecting to Star-P Server with 4 processes

Star-P Client.

(C) MIT 2002-04.

(C) Interactive Supercomputing, LLC 2004.

All Rights Reserved.

>> 1+1

ans =

 2

>> A=rand(100*p)

 A =

 ddense object: 100p-by-100p

100x100 on the server

18
&

Data layouts

1. rand(10*p,10) row distributed

2. rand(10,10*p) column distributed

3. rand(10*p,10*p) or rand(10*p)

block cyclic distributed

19
&

Data layouts

1. rand(10*p,10) row distributed

2. rand(10,10*p) column distributed

3. rand(10*p,10*p) or rand(10*p)

block cyclic distributed

What is this p anyway?

20
&

Data layouts

1. rand(10*p,10) row distributed

2. rand(10,10*p) column distributed

3. rand(10*p,10*p) or rand(10*p)

block cyclic distributed

What is this p anyway?

•World’s dumbest symbolic var?

•Better to tag dimensions than arrays!

21
&

Principles

MATLAB language & experience

Minimal code changes

Server has big data

a. Distributed attribute, once established, should be propagated
 Operators on distributed data should preserve distribution→
 Arrays created via indexing should preserve distribution→

b. Data should be moved back to the client only as a last resort, and
usually via explicit user direction

c. Some minor behavioral changes OK, as dictated by big data

22
&

New Variables / Routines

 p

“Symbolic” variable denoting distribution of array dimension

 np

a. Number of processors

Small set of added commands (prefixed by “pp”)

a. ppeval (MIMD mode)

b. Data query: ppwhos

c. Data movement: ppload/ppsave, matlab2pp/pp2matlab

d. Performance monitoring: pptic/pptoc

23
&

Indexing: Examples

a = rand(1000*p); b = rand(1000*p);

C = a(1:end, 1:end);

D = a(18:23, 47:813); %all distributed

E = a(:);

F = a(47,18); % scalar -> local

24
&

Explicit Data Movement

 pp2matlab / matlab2pp

Ideal: Never use pp2matlab

Rather use “display”

Ideal: Never use matlab2pp

Rather use “reshape”

25
&

Global Array syntax

aa = rand(n,n*p); % explicitly parallel with *p

ppload ‘imagedata’ aa % explicitly parallel with ppload

[nrow ncol] = size(aa); % implicitly parallel

bb = ones(nrow,ncol); % “”

cc = fft2(aa); % “”

dd = ifft2(cc); % “”

diff = max(max(abs(aa-dd)));

if (diff > 100*eps)

 sprintf(‘Numerical error in fft/ifft, diff=%f’, diff);

end

26
&

Data Parallel vs Global Array Syntax

Usually used synonymously

Probably unfortunate:

 C=A+B is both

Data parallel not GAS

for i=1:n, for j=1:n

c(i,j)=a(i,j)+b(i,j)

end, end

27
&

Performance Basics

Star-P aimed for big data sizes

a. i.e., bigger than the desktop

“Vectorization” will be important

a. Client/server architecture introduces some latency

b. Communicating with the server in larger chunks preferred

28
&

Instrumenting Code

 pptic/pptoc

a. Usage like tic/toc

b. Provides information about client-server traffic and server
execution variables (time, counts of key operations)

 PPPROFILING

global PPPROFILING; PPPROFILING = 1

c. Gives information about each client/server call

29
&

Large Memory Demo
>> np

ans =

 56

>> scale

echo on

n = sqrt(0.8*m/8)

n =

 5.9161e+05

aa = rand(n*p, n*p);

tic ; sum(sum(aa)), toc

ans =

 1.7500e+11

Elapsed time is 260.589829 seconds.

>> whose

Your variables are:

 Name Size Bytes Class

 aa 591607px591607p 2.799991e+12 ddense array

 ans 1x1 8 double array

 m 1x1 8 double array

 n 1x1 8 double array

Grand total is 3.499988e+11 elements using 2.799991e+12 bytes

MATLAB has a total of 3 elements using 24 bytes

Star-P server has a total of 3.499988e+11 elements using 2.799991e+12 bytes

30
&

pptic/pptoc Usage

>> a = rand(100);

>> B = rand(100*p);

>> % B is distributed, a is local; a will get moved
to the server

>> pptic, C = a+B; pptoc;

Client/server communication info:

 Send msgs/bytes Recv msgs/bytes Time spent

 4e+00 / 2.080e+02B 4e+00 / 8.054e+04B 7.032e-01s

Server info:

 execution time on server: 2.621e-02s

 #ppchangedist calls: 0

31
&

PPPROFILING Usage

>> global PPPROFILING ; PPPROFILING = 1

PPPROFILING =

 1

>> a = rand(1000*p)

ppbase_addDense [2]

 [1000]

 [1000]

 [1]

 [1]

 [3]

time=0.67036

a =

 ddense object: 1000p-by-1000p

>> b = fft(a)

ppfftw_fft [1x1 com.isc.starp.ppclient.MatrixID]

 [0]

 [1]

time=0.30302

ppbase_id2ddata [6]

time=0.14625

b =

 ddense object: 1000-by-1000p

32
&

Sparse Matrices & Combinatorial Algorithms

33
&

Combinatorial Algorithm Design Principle:
Do it with a sparse matrix

Graph Operations are well expressed with sparse
matrices as the data structure.

Primitives for combinatorial scientific computing.

a. Random-access indexing: A(i,j)

b. Neighbor sequencing: find (A(i,:))

c. Sparse table construction: sparse (I, J, V)

d. Matrix * Vector: walking on the graph

34
&

Star-P sparse data structure

• Full:

• 2-dimensional array of real or complex
numbers

• (nrows*ncols) memory

02641

0590

53031
5953 264131

23 211

• Sparse:

• compressed row storage

• about (2*nzs + nrows) memory

35
&

P0

P1

P2

Pn

5941 532631

23 131

Each processor stores:
• # of local nonzeros
• range of local rows

Star-P distributed sparse data structure

36
&

SSCA#2 Graph Theory Benchmark

Scalable Synthetic Compact
Application (SSCA)
Benchmarks

Bioinformatics Optimal Pattern
Matching

Graph Theory

Sensor Processing

SSCA#2:- Graph Analysis;
stresses memory access;
compute-intensive and
hard to parallelize.

8192-vertex graph from Kernel 1 plotted with Fiedler coordinates

37
&

SSCA#2

Kernel 1: Construct graph data structures

Bulk of time for smaller problems

Kernel 2: Search within large sets

Kernel 3: Subgraph extraction

Kernel 4: Graph clustering

Version does not scale for larger problems

OpenMP Contest:
http://www.openmp.org/drupal/sc05/omp-contest.htm

3.First prize: $1000 plus a 60GB iPod.

4.Second prize: $500 plus a 4GB iPod nano.
5.Third prize: $250 plus a 1GB iPod shuffle

38
&

Scalability

Kernels 1 through 3 ran on N=226

• Previous largest known run is N=221or 32 times smaller on
a Cray MTA-2

• Timings scale reasonably – we played with building the
largest sparse matrix we could, until we hit machine
limitations!

• 2xProblem Size  2xTime

• 2xProblem Size & 2xProcessor Size  same time

39
&

Lines of Code

Lines of executable code (excluding I/O and graphics based on
original codes available):

24129544Kernel 4
2979125Kernel 3
1214412Kernel 2
2566829Kernel 1

PthreadsThe speccSSCA2

40
&

Expressive Power: SSCA#2 Kernel 3

Star-P (25 SLOC)
A = spones(G.edgeWeights{1});

nv = max(size(A));

npar = length(G.edgeWeights);

nstarts = length(starts);

for i = 1:nstarts

 v = starts(i);

 % x will be a vector whose nonzeros

 % are the vertices reached so far

 x = zeros(nv,1);

 x(v) = 1;

 for k = 1:pathlen

 x = A*x;

 x = (x ~= 0);

 end;

 vtxmap = find(x);

 S.edgeWeights{1} = G.edgeWeights{1}…

 (vtxmap,vtxmap);

 for j = 2:npar

 sg = G.edgeWeights{j}(vtxmap,vtxmap);

 if nnz(sg) == 0

 break;

 end;

 S.edgeWeights{j} = sg;

 end;

 S.vtxmap = vtxmap;

 subgraphs{i} = S;

end

MATLABmpi (91 SLOC)
declareGlobals;

intSubgraphs = subgraphs(G, pathLength, startSetInt);

strSubgraphs = subgraphs(G, pathLength, startSetStr);

%| Finish helping other processors.

if P.Ncpus > 1

 if P.myRank == 0 % if we are the leader

 for unused = 1:P.Ncpus-1

 [src tag] = probeSubgraphs(G, [P.tag.K3.results]);

 [isg ssg] = MPI_Recv(src, tag, P.comm);

 intSubgraphs = [intSubgraphs isg];

 strSubgraphs = [strSubgraphs ssg];

 end

 for dest = 1:P.Ncpus-1

 MPI_Send(dest, P.tag.K3.done, P.comm);

 end

 else

 MPI_Send(0, P.tag.K3.results, P.comm, ...

 intSubgraphs, strSubgraphs);

 [src tag] = probeSubgraphs(G, [P.tag.K3.done]);

 MPI_Recv(src, tag, P.comm);

 end

end

function graphList = subgraphs(G, pathLength, startVPairs)

graphList = [];

% Estimated # of edges in a subgraph. Memory will grow as needed.

estNumSubGEdges = 100; % depends on cluster size and path length

%--

% Find subgraphs.

%--

% Loop over vertex pairs in the starting set.

for vertexPair = startVPairs.'

 subg.edgeWeights{1} = ...

 spalloc(G.maxVertex, G.maxVertex, estNumSubGEdges);

 startVertex = vertexPair(1);

 endVertex = vertexPair(2);

 % Add an edge with the first weight.

 subg.edgeWeights{1}(endVertex, startVertex + P.myBase) = ...

 G.edgeWeights{1}(endVertex, startVertex);

 if ENABLE_PLOT_K3DB

 plotEdges(subg.edgeWeights{1}, startVertex, endVertex, 1);

 end

 % Follow edges pathLength times in adj matrix to grow subgraph as big as

 % required.

 %| This code could be modified to launch new parallel requests (using

 %| eliminating the need to pass back the start-set (and path length).

 newStarts = [endVertex]; % Not including startVertex.

 allStarts = newStarts;

 for k = 2:pathLength

 % Find the edges emerging from the current subgraph.

 if ~P.paral

 newEdges = G.edgeWeights{1}(:, newStarts);

 subg.edgeWeights{1}(:, newStarts) = newEdges;

 [allNewEnds unused] = find(newEdges);

 else % elseif P.paral

 allNewEnds = []; % Column vector of edge-ends so far.

 numRqst = 0; % Number of requests made so far.

 % For each processor which has any of the vertices we need:

 startDests = floor((newStarts - 1) / P.myV);

 uniqDests = unique(startDests);

 for dest = uniqDests

 starts = newStarts(startDests == dest);

 if dest == P.myRank

 newEdges = G.edgeWeights{1}(:, starts - P.myBase);

 subg.edgeWeights{1}(:, starts) = newEdges;

 [allNewEnds unused] = find(newEdges);

 elseif ~isempty(starts)

 MPI_Send(dest, P.tag.K3.dataReq, P.comm, starts);

 numRqst = numRqst + 1;

 end

 end

 % Wait for a response for each request we sent out.

 for unused = 1:numRqst

 [src tag] = probeSubgraphs(G, [P.tag.K3.dataResp]);

 [starts newEdges] = MPI_Recv(src, tag, P.comm);

 subg.edgeWeights{1}(:, starts) = newEdges;

 [newEnds unused] = find(newEdges);

 allNewEnds = [allNewEnds; newEnds];

 end

 end % of if ~P.paral

 % Eliminate any new ends already in the all starts list.

 newStarts = setdiff(allNewEnds.', allStarts);

 allStarts = [allStarts newStarts];

 if ENABLE_PLOT_K3DB

 plotEdges(subg.edgeWeights{1}, startVertex, endVertex, k);

 end % of ENABLE_PLOT_K3DB

 if isempty(newStarts) % if empty we can quit early.

 break;

 end

 end

 % Append to array of subgraphs.

 graphList = [graphList subg];

end

function [src, tag] = probeSubgraphs(G, recvTags)

while true

 [ranks tags] = MPI_Probe('*', P.tag.K3.any, P.comm);

 requests = find(tags == P.tag.K3.dataReq);

 for mesg = requests.'

 src = ranks(mesg);

 starts = MPI_Recv(src, P.tag.K3.dataReq, P.comm);

 newEdges = G.edgeWeights{1}(:, starts - P.myBase);

 MPI_Send(src, P.tag.K3.dataResp, P.comm, starts, newEdges);

 end

 mesg = find(ismember(tags, recvTags));

 if ~isempty(mesg)

 break;

 end

end

src = ranks(mesg(1));

tag = tags(mesg(1));

24129544Kernel 4

2979125Kernel 3

1214412Kernel 2

2566829Kernel 1

C/Pthreads/
SIMPLE

executable spec cSSCA2

41
&

Interactivity!

Did not just build a benchmark: Explored an algorithm
space!

Spectral Partitioning based on Parpack was fine for
small sizes but not larger.

We played around! We plotted data! We had a good
time.  Parallel computing is fun again!

42
&

Interactive Supercomputing

No “change in religion”

a. Use familiar tools

b. Desktop, interactive

5-10x manpower savings by transforming
workflow

a. Enables rapid (and more frequent)
iteration

b. Drives better conclusions, decisions,
products

Improves “Time to Production”

a. 50% reductions in calendar time

b. Improves time to market

c. Increases profits

"In computing with humans, response time is
everything….One's likelihood of getting the
science right falls quickly as one loses the ability
to steer the computation on a human time
scale."

Prof. Nick Trefethen
Oxford University

43
&

Contact:Alan Edelman

Interactive Supercomputing • 135 Beaver Street, FL 2 • Waltham, MA 02452

781.398-0010 • edelman@interactivesupercomputing.com • www.interactivesupercomputing.com

Delivering Interactive
Parallel Computing Power
to the Desktop

Alan Edelman

Interactivesupercomputing.com

