
15th LCSC - Linköping 18/10/2004 BCCS, UiB

CONTENTS

SCALABLE ALGORITHMS
for solving

large sparse linear systems of equations

• Sparse direct solvers (multifrontal)

• Substructuring methods (hybrid solvers)

Jacko Koster, Bergen Center for Computational Science, University of Bergen

(prepared with help from the MUMPS team, esp. Patrick Amestoy and Jean-Yves L’Excellent)

25th LCSC - Linköping 18/10/2004 BCCS, UiB

Introduction

• The (repeated) solution of sparse linear systems of equations is often the most
computationally intensive part of a simulation process

• Problem: solve A x = b, where A is square n x n, sparse, and symmetric
positive definite, symmetric indefinite, or unsymmetric, and possibly rank
deficient, vector b of length n is given, vector x of length n is to be computed

• Develop software libraries tailored for parallel processing, in particular
distributed-memory platforms (loosely connected SMPs, clusters)

Simulation of a physical problem often leads to sparse systems A x =
b

35th LCSC - Linköping 18/10/2004 BCCS, UiB

Direct methods - Introduction

Solve A x = b :

1. LU factorization: P A Q = LU or P A Q = LDLT

 P is row permutation, Q is column permutation,
 L is lower triangular, U is upper triangular matrix

 Dominant part of computation is O(n^3):
 for k = 1,n /* eliminate variable k */
 for i = k+1,n /* overwrite A[k+1:n, k+1:n] */
 for j = k+1,n

2. Solve L y = P b, for vector y (forward substitution, O(n^2))
3. Solve U [Q]-1 x = y, for vector x (back substitution, O(n^2))

D = D – C [F]-1 B

Uses BLAS1,
BLAS2, and
BLAS3 for high
performance

F B

C D

A
k+1 n1

1

k+1

n

Block version:
eliminate k variables

45th LCSC - Linköping 18/10/2004 BCCS, UiB

Direct methods - Introduction

Why permutations P and Q in P A Q = LU ?

P and Q define
variable ordering
In the matrix

P, Q needed to find large (pivots) akk
(k)

  numerical accuracy

P, Q needed to preserve sparsity: make as few as possible aij
(k) nonzero (fill-in)

  keep L and U sparse  computational and memory savings

A

k n1
1

k

n

q

p

k n1
1

k

n

j

i

55th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

• The factorization of matrix A is driven by an elimination tree that is determined by the
matrix structure and the variable ordering (permutations P and Q).

• A node in the tree represents a partial factorization of a (small) dense matrix.

• An edge in the tree represents data movement between dense matrices.

• The tree defines a partial ordering: a node can only be processed when all its children are
processed. Leaves are processed first; root comes last. Nodes that are not ancestors to
one another can be processed simultaneously (parallelism).

more parallelism

tridiagonal matrix with natural
ordering; no parallelism

diagonal matrix;
embarrasing parallel

Basic idea: a large sparse matrix is a sum of smaller dense matrices

root

leaf

65th LCSC - Linköping 18/10/2004 BCCS, UiB

Sparse direct methods

Variable ordering has large impact on performance

- Ordering impacts elimination tree, parallelism, computation, and memory use

- It easily pays off to spend time on analyzing the matrix before factorization

- However, finding the optimal ordering to minimize fill-in is an NP-complete problem

Use heuristics to study/optimize topology of the tree (number of nodes, sizes of nodes, …)

Fill-in (entries created
during factorization)

Initial matrix

 no fill-in

1

2

3

4

5

75th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

7 nodes ready to be processed

8 nodes not ready to be processed

85th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

6 nodes ready to be processed

8 nodes not ready to be processed

95th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

6 nodes ready to be processed

7 nodes not ready to be processed

105th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

5 nodes ready to be processed

7 nodes not ready to be processed

115th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

5 nodes ready to be processed

6 nodes not ready to be processed

125th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

4 nodes ready to be processed

6 nodes not ready to be processed

135th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

4 nodes ready to be processed

5 nodes not ready to be processed

145th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

4 nodes ready to be processed

4 nodes not ready to be processed

155th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

3 nodes ready to be processed

4 nodes not ready to be processed

165th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

3 nodes ready to be processed

3 nodes not ready to be processed

175th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

3 nodes ready to be processed

2 nodes not ready to be processed

185th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

2 nodes ready to be processed

2 nodes not ready to be processed

195th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

1 nodes ready to be processed

2 nodes not ready to be processed

205th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

1 nodes ready to be processed

1 nodes not ready to be processed

215th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

1 node ready to be processed

ps. In practice, tree could be processed in many orders. A depth-first search (DFS)
order allows the frontal matrices to be stored on a stack.

1 2

3

4 5

6

7

9

10 11

12

13

14

15

8

(DFS numbering)

225th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

ZOOM-IN

F2 B2

C2 D2

k2+1 n21
1

k2+1

n2

F1 B1

C1 D1

k1+1 n11
1

k1+1

n1

F3 B3

C3 D3

k3+1 n31
1

k3+1

n3
assemble D2
into A3

assemble D1
into A2

D3 = D3 – C3 [F3] -1 B3

D2 = D2 – C2 [F2] -1 B2

D1 = D1 – C1 [F1] -1 B1

D1

D2

D3

D… D…

D…

D…

A1

A3

A2

235th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

Three phases to solve A x = b:

1. Analysis of matrix A (symbolic factorization):

 Determine appropriate P and Q based on nonzero structure of A to minimize fill-in in L and
U. Compute the elimination tree. Prepare for parallel execution, map tree nodes onto
processors. Each processor prepares the local data structures.

2. Factorization of A (numerical factorization):

 Compute L and U using the tree. Possibly modify P and Q a-posteriori to ensure numerical
stability.

3. Forward/back substitution:

 Use P, Q, L, and U to compute x = [A] -1 b

 For a sequence of systems A x1 = b1, A x2 = b2, … : do steps 1 and 2 only once.

 For a sequence of systems A1 x1 = b1, A2 x2 = b2, … with A1, A2, … having the same
nonzero structure: do step 1 only once.

245th LCSC - Linköping 18/10/2004 BCCS, UiB

Multifrontal direct methods

In a distributed-memory environment: map nodes of the tree onto processors

0 2 2

1

0

3

0

0

1

3

1

2

2

1

3

Constraints;
• Each node has its own amount of work
• Tree defines node dependencies
• Processors must get roughly the same amount of total work (work load balance)
• Minimize inter-processor communication
• Minimize idling of processors

2 0 0

1

2

2

0

2

1

1

3

3

2

3

2

communication

no communication
Four processors
0 ,1, 2, 3

255th LCSC - Linköping 18/10/2004 BCCS, UiB

MUMPS parallel multifrontal scheme

• Task granularity: assign subtrees to processors to minimize communication
• In practice, nodes near the root require much work (often 75% of work is in few top levels)
• Reduced parallelism near the root (relatively few nodes, many processors)
• Use multiple processors to process large nodes near the root:

Four processors
P0, P1, P2, P3

265th LCSC - Linköping 18/10/2004 BCCS, UiB

MUMPS parallel multifrontal scheme

Four processors
P0, P1, P2, P3

• Allow dynamic assignment of matrices during factorization to take care of numerical
stability issues

275th LCSC - Linköping 18/10/2004 BCCS, UiB

MUMPS in a cluster environment

• Flop-based scheduling strategy appears to be most natural (work balance,
minimize elapsed time). Works fine in shared-memory environment.

• However, a good work balance does not necessarily imply a good memory
balance. On clusters (of small SMPs) with little memory per node, a bad
memory balance may make computing a solution impossible.

  memory scalability and memory load balance are as important

  need for memory-aware task scheduling

• Similarly, there is a need for interconnect-aware task scheduling to take
into account network latencies and bandwidths…

285th LCSC - Linköping 18/10/2004 BCCS, UiB

MUMPS package http://graal.ens-lyon.fr/MUMPS

• Background:
– Project continued from LTR European project PARASOL (1996-1999)
– Developers and contributors:
 Patrick Amestoy (ENSEEIHT-IRIT, Toulouse)
 Jean-Yves L'Excellent (ReMAP project, INRIA, Lyon)
 Iain Duff (CERFACS, Toulouse and RAL, UK)
 Abdou Guermouche (ReMAP project, Toulouse)
 Jacko Koster (Parallab, BCCS, Norway)
 Stéphane Pralet (CERFACS, Toulouse)
 Christophe Vömel (CERFACS, Toulouse)

• General purpose, competitive, many functionalities
– Types of matrices: SPD, symmetric, unsymmetric
– Input matrix format: assembled, elemental, distributed
– Arithmetic: real, double, complex, double complex
– Numerical pivoting, scalings, backward error analysis, iterative refinement
– Written in F90 and MPI; C interface provided

• MUMPS 4.3.2 (latest public release, July 2003)
– Requested/downloaded by ca. 500 users
– Ca. 200.000 lines of code and growing …
– Freely available software

295th LCSC - Linköping 18/10/2004 BCCS, UiB

Some MUMPS usage

• PETSc (Argonne National Laboratory)
– MUMPS available from PETSc 2.2.0 library as an optional package

• Academic and industrial users from various application fields
– Structural mechanical engineering

– Biomechanics

– Heat transfer analysis

– Medical image processing

– Geophysics

– Optical problems

– Ad-hoc network modeling (Markov processes)

– Econometric modeling

– Oil reservoir simulation

– Computation fluid dynamics

– Astrophysics

– Circuit simulation

• Used by EADS, Dassault, CEA, Boeing, NEC, THALES, NASA, MIT,
several US national labs, …

305th LCSC - Linköping 18/10/2004 BCCS, UiB

SALSA - Introduction

Iterative substructuring for solving A x = b

The idea is to combine the best of direct methods (robustness) with that of
iterative methods (speed). Reorder A into bordered block diagonal form :

This represents N non-overlapping subdomains. The interior matrices Aii
 can be

processed simultaneously which provides a natural source of parallelism.

315th LCSC - Linköping 18/10/2004 BCCS, UiB

SALSA - Introduction

The solution process for A x = b consists of three main steps.

3. Eliminate interior variables in Aii
p (in parallel for each subdomain), e.g., with

a sparse direct solver like MUMPS
4. Eliminate interface variables in Arr

p with use of local Schur complement
matrices S(p) = Arr

p – Ari
p Aii

p Air
p typically with preconditioned iterative

method (PCG, Bi-CGSTAB, GMRES, ...)
5. Postprocessing to obtain final solution

interface variables

interior variables

Example : 4 subdomains, 9 interface variables, 16 interior variables

1 3

2 4

325th LCSC - Linköping 18/10/2004 BCCS, UiB

SALSA features

SALSA accepts matrices in various formats
Assembled format (traditional Compressed Sparse Row)

Elemental format (sum of small dense matrices)

Partitioned format (sum of N matrices in CSR format, one per subdomain)

The number of processors N is independent of number of subdomains P
 P = N : one domain per processor (default)

 N > P : map multiple subdomains onto one processor

 of interest for convergence studies of preconditioners

 P > N : map multiple processors onto one subdomain

 of interest for load balancing and optimal use of available resources

SALSA works with multiple internal Schur complement matrix formats
 Explicit : the matrix S(p) is computed explicitly (e.g., by MUMPS)

 Implicit : the action of S(p) is derived from its definition

 (3 mat-vec products, 1 fw/bw solve)

335th LCSC - Linköping 18/10/2004 BCCS, UiB

SALSA features

1-level preconditioners include:
Jacobi/Diagonal

Block (incomplete) LU

Neumann-Neumann (Deroeck & Le Tallec ‘91)

2-level preconditioners: based on Balancing Neumann-Neumann (Mandel ‘93)

 Requires approximation of local null spaces in case S(p) is singular

 1. computed algebraically based on deriving smallest eigenvalue

 2. known a-priori depending on problem type (elasticity, etc.)

Direct substructuring:

 the interface problem can also solved with a direct method to provide

 maximum robustness

345th LCSC - Linköping 18/10/2004 BCCS, UiB

SALSA example of usage

DNV tubular joint problem :
• Partitioned by DNV into 58 subdomains of varying sizes

• Mix of solid, shell, transitional finite elements

• 97,470 dofs, of which 13,920 on interface

7.21.85.33112

8.32.16.1318

13.94.39.7314

25.38.716.5312

45.716.629.0321

total
(secs)

PCG
(secs)

preproc
(secs)

#iternprocs

Non-optimal speedups for larger number of processors primarily
due to differences in domain sizes (’naive’ cyclic mapping of
domains used). Results obtained on IBM p690 (power4 1.3 Ghz)

355th LCSC - Linköping 18/10/2004 BCCS, UiB

SALSA on-going/future work

More robust 2-level preconditioners:
Collaboration with L. Giraud (CERFACS)
Collaboration with J. Mandel (Univ. of Colorado)

Automatic load balancing:
 Needed when the number of subdomains differs from the number of

processors or when subdomains vary in size and work

Inclusion of more iterative schemes:
 Primarily based on user requests

Pursue further collaboration with Simula:
 To integrate SALSA into a challenging application
 for simulating the electrical activity of the heart
 (talk Xing Cai tomorrow)

365th LCSC - Linköping 18/10/2004 BCCS, UiB

Miscellaneous

MUMPS and/or SALSA is being tested/developed on problems like:

375th LCSC - Linköping 18/10/2004 BCCS, UiB

How it fits together

application

SALSA

MUMPS

BLAS

ScaLAPACK

LAPACK

MPIMETIS

ARPACK

